Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khir, Hazim

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Effect of lead sintering aid to TiO2 photoanode for flexible dye sensitized solar cellcitations

Places of action

Chart of shared publication
Ahmad, M. S.
1 / 2 shared
Pandey, A. K.
1 / 13 shared
Saidur, R.
1 / 13 shared
Dewika, M.
1 / 1 shared
Samykano, M.
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ahmad, M. S.
  • Pandey, A. K.
  • Saidur, R.
  • Dewika, M.
  • Samykano, M.
OrganizationsLocationPeople

document

Effect of lead sintering aid to TiO2 photoanode for flexible dye sensitized solar cell

  • Ahmad, M. S.
  • Pandey, A. K.
  • Khir, Hazim
  • Saidur, R.
  • Dewika, M.
  • Samykano, M.
Abstract

<jats:title>Abstract</jats:title><jats:p>The commercial application of flexible dye sensitized solar cells (DSSCs) is somewhat limited due to the devices’ low conversion efficiency. The low sintering temperature in preparing the photoanode has caused poor interparticle contact, low charge transfer and low efficiency. Hence, this research aims to improve the interparticle contact of titanium dioxide (TiO<jats:sub>2</jats:sub>) photoanode with the novel use of lead (Pb) nanoparticles as sintering aid at low temperature. TiO<jats:sub>2</jats:sub>-Pb composite photoanode was prepared with different composition of Pb including 4% and 7% sintered at low temperature of 250°C. The research discovered that TiO<jats:sub>2</jats:sub> photoanode mixed with 4% Pb composition showed the lowest charge transfer resistance (R<jats:sub>CT</jats:sub>) even at low sintering temperature. The R<jats:sub>CT</jats:sub> value was even lower than a commercial TiO<jats:sub>2</jats:sub> photoanode sample that was sintered at 450°C. The addition of Pb sintering aid has improved interparticle contact in the photoanode via the neck formation at the TiO<jats:sub>2</jats:sub>-Pb interface and enhanced charge transfer despite the low temperature. The prepared photoanode samples displayed potential in developing highly efficient flexible DSSC.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • composite
  • titanium
  • sintering