People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jung, M. H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Evolution of bulk magnetic structure in MnSi thin film: a soft x-ray magnetic circular dichroism study
Abstract
<jats:title>Abstract</jats:title><jats:p>Skyrmionic materials have exceptionally stable topologically protected chiral structures, the B20 helimagnetic MnSi is regarded as the best contender in this category. A non-centrosymmetric polycrystalline, MnSi thin films were fabricated on a c-sapphire substrate using a radio-frequency magnetron sputtering method. The structural and optical characteristics of the topological MnSi were examined using x-ray diffraction, Ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy technique. The most sophisticated tools like Vibrating sample magnetometer, element-specific soft x-ray absorption spectroscopy and soft-x-ray magnetic circular dichroism (XMCD) were used to probe its electronic and magnetization behaviour. The material exhibits a higher degree of magnetization signifying ferromagnetism in the bulk region as observed at ∼ 300 K and ∼ 670 K. The measured XMCD intensity at 300 K in the bulk-sensitive total-fluorescence-yield mode increased from 0 T to 2 T, which also raises the possibility of long-range ferromagnetic ordering in it. In this perspective of research, MnSi is recognised as a developing material for spintronic-based devices.</jats:p>