Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ternero, Pau

  • Google
  • 6
  • 29
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024In-Flight Tuning of Au-Sn Nanoparticle Properties1citations
  • 2023Template-free generation and integration of functional 1D magnetic nanostructures7citations
  • 2023Direct Observation of Liquid–Solid Two-Phase Seed Particle-Assisted Kinking in GaP Nanowire Growth6citations
  • 2022Influence of growth temperature on the pinning landscape of YBa 2 Cu 3 O 7− δ films grown from Ba-deficient solutions5citations
  • 2022Influence of growth temperature on the pinning landscape of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−</sub> <sub>δ</sub> films grown from Ba-deficient solutions5citations
  • 2022Influence of growth temperature on the pinning landscape of YBa2Cu3O7−δ films grown from Ba-deficient solutions5citations

Places of action

Chart of shared publication
Eriksson, Axel Christian
1 / 4 shared
Messing, Maria E.
3 / 9 shared
Hübner, Julia Maria
1 / 1 shared
Rissler, Jenny
1 / 5 shared
Preger, Calle
2 / 3 shared
Sedrpooshan, Mehran
2 / 2 shared
Westerström, Rasmus
1 / 7 shared
Burke, Adam M.
1 / 1 shared
Bulbucan, Claudiu
1 / 4 shared
Finizio, Simone
1 / 10 shared
Watts, Benjamin
1 / 8 shared
Maltoni, Pierfrancesco
1 / 13 shared
Peddis, Davide
1 / 33 shared
Dick, Kimberly A.
1 / 19 shared
Snellman, Markus
1 / 6 shared
Jacobsson, Daniel
1 / 14 shared
Seifner, Michael S.
1 / 5 shared
Hu, Tianyi
1 / 2 shared
Mestres, Narcís
3 / 15 shared
Palau, Anna
3 / 32 shared
Pop, Cornelia
3 / 9 shared
Celentano, Giuseppe
3 / 11 shared
Meledin, Alexander
3 / 7 shared
Ricart, Susagna
3 / 29 shared
Piperno, Laura
3 / 6 shared
Puig, Teresa
2 / 6 shared
Obradors, Xavier
3 / 52 shared
Alcalà, Jordi
3 / 6 shared
Puig Molina, Teresa
1 / 40 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Eriksson, Axel Christian
  • Messing, Maria E.
  • Hübner, Julia Maria
  • Rissler, Jenny
  • Preger, Calle
  • Sedrpooshan, Mehran
  • Westerström, Rasmus
  • Burke, Adam M.
  • Bulbucan, Claudiu
  • Finizio, Simone
  • Watts, Benjamin
  • Maltoni, Pierfrancesco
  • Peddis, Davide
  • Dick, Kimberly A.
  • Snellman, Markus
  • Jacobsson, Daniel
  • Seifner, Michael S.
  • Hu, Tianyi
  • Mestres, Narcís
  • Palau, Anna
  • Pop, Cornelia
  • Celentano, Giuseppe
  • Meledin, Alexander
  • Ricart, Susagna
  • Piperno, Laura
  • Puig, Teresa
  • Obradors, Xavier
  • Alcalà, Jordi
  • Puig Molina, Teresa
OrganizationsLocationPeople

article

Influence of growth temperature on the pinning landscape of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−</sub> <sub>δ</sub> films grown from Ba-deficient solutions

  • Mestres, Narcís
  • Palau, Anna
  • Pop, Cornelia
  • Celentano, Giuseppe
  • Meledin, Alexander
  • Ricart, Susagna
  • Piperno, Laura
  • Puig, Teresa
  • Obradors, Xavier
  • Alcalà, Jordi
  • Ternero, Pau
Abstract

<jats:title>Abstract</jats:title><jats:p>Cuprate coated conductors are promising materials for the development of large-scale applications, having superior performance over other superconductors. Tailoring their vortex pinning landscape through nanostructure engineering is one of the major challenges to fulfill the specific application requirements. In this work, we have studied the influence of the growth temperature on the generation of intrinsic pinning defects in YBa<jats:sub>2</jats:sub>Cu<jats:sub>3</jats:sub>O<jats:sub>7−<jats:italic>δ</jats:italic></jats:sub> films grown by chemical solution deposition using low Ba precursor solutions. We have analysed the critical current density as a function of the temperature, applied magnetic field magnitude and orientation, <jats:italic>J</jats:italic><jats:sub>c</jats:sub>(<jats:italic>T,H,θ</jats:italic>), to elucidate the nature and strength of pinning sites and correlate the microstructure of the films with their superconducting performance. An efficient pinning landscape consisting of stacking faults and associated nanostrain is naturally induced by simply tuning the growth temperature without the need to add artificial pinning sites. Samples grown at an optimized temperature of 750 °C show very high self-field <jats:italic>J</jats:italic><jats:sub>c</jats:sub> values correlated with an overdoped state and improved <jats:italic>J</jats:italic><jats:sub>c</jats:sub>(<jats:italic>T,H,θ</jats:italic>) performances.</jats:p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • microstructure
  • strength
  • defect
  • current density
  • stacking fault