People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martins, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2020Novel laser-assisted glass frit encapsulation for long-lifetime perovskite solar cellscitations
- 2019Development of hermetic glass frit encapsulation for perovskite solar cellscitations
- 2017Low temperature hermetic laser-assisted glass frit encapsulation of soda lime glass substratescitations
- 2017Development of stable current collectors for large area dye-sensitized solar cellscitations
- 2014Evaluation of Bonding Performance of Amino Polymers Using ABEScitations
- 2013Dispersion of graphene nanoplatelets in poly(vinyl acetate) latex and effect on adhesive bond strengthcitations
Places of action
Organizations | Location | People |
---|
article
Development of hermetic glass frit encapsulation for perovskite solar cells
Abstract
A hermetic laser-assisted glass frit encapsulation, at a process temperature of 120 degrees C, was developed for perovskite solar cell application. The hermeticity and long-term stability of the sealing was examined based on standard tests for photovoltaic (PV) applications. Encapsulations using fluorine doped tin oxide (FTO)-coated glass substrates displayed 8.93 x 10(-8) atm center dot cm(3) center dot s(-1) air leak rate after five cycles of a humidity-freeze test according to the IEC61646 standard; a rate lower than the reject limit of the MIL-STD-883 standard test for fine leaks. Devices sealed with a TiO2 blocking layer and FTO scribing-denoted as an empty perovskite solar cell-showed that the encapsulation is compatible with the various thermal coefficient of expansion regions of perovskite solar cells (PSCs). The applicability of the MIL-STD-883 standard was studied in detail and it was concluded that a new method is required to measure the fine helium leak rate of devices with cavity sizes larger than 5.5 x 5.5 cm(2). The developed sealing process is scalable for larger devices; therefore, it guarantees a new step forward for the industrialization of PSCs.