Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhu, Yuechen

  • Google
  • 1
  • 6
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Inducing cells to disperse nickel nanowires via integrin-mediated responses31citations

Places of action

Chart of shared publication
Sharma, Anirudh
1 / 21 shared
Stadler, Bethanie J. H.
1 / 11 shared
Divito, Michael D.
1 / 2 shared
Kim, Seung Yeon
1 / 2 shared
Shore, Daniel
1 / 1 shared
Orlowski, Gregory M.
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Sharma, Anirudh
  • Stadler, Bethanie J. H.
  • Divito, Michael D.
  • Kim, Seung Yeon
  • Shore, Daniel
  • Orlowski, Gregory M.
OrganizationsLocationPeople

article

Inducing cells to disperse nickel nanowires via integrin-mediated responses

  • Sharma, Anirudh
  • Stadler, Bethanie J. H.
  • Divito, Michael D.
  • Zhu, Yuechen
  • Kim, Seung Yeon
  • Shore, Daniel
  • Orlowski, Gregory M.
Abstract

<p>We present non-cytotoxic, magnetic, Arg-Gly-Asp (RGD)-functionalized nickel nanowires (RGD-nanowires) that trigger specific cellular responses via integrin transmembrane receptors, resulting in dispersal of the nanowires. Time-lapse fluorescence and phase contrast microscopy showed that dispersal of 3 μm long nanowire increased by a factor of 1.54 with functionalization by RGD, compared to polyethylene glycol (PEG), through integrin-speci fic binding, internalization and proliferation in osteosarcoma cells. Further, a 35.5% increase in cell density was observed in the presence of RGD-nanowires, compared to an increase of only 15.6% with PEG-nanowires. These results promise to advance applications of magnetic nanoparticles in drug delivery, hyperthermia, and cell separation where uniformity and high efficiency in cell targeting is desirable.</p>

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • nickel
  • phase
  • functionalization
  • microscopy