People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martin, Richard A.
Aston University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024Multifunctional gallium doped bioactive glasses: a targeted delivery for antineoplastic agents and tissue repair against osteosarcomacitations
- 2020Evaluation of effectiveness of 45S5 bioglass doped with niobium for repairing critical-sized bone defect in in vitro and in vivo models
- 2020Evaluation of effectiveness of 45S5 bioglass doped with niobium for repairing critical-sized bone defect in in vitro and in vivo modelscitations
- 2020Photo-polymerisation variables influence the structure and subsequent thermal response of dental resin matricescitations
- 2019The antimicrobial efficacy of hypoxia mimicking cobalt oxide doped phosphate-based glasses against clinically relevant Gram positive, Gram negative bacteria and a fungal straincitations
- 2019The antimicrobial efficacy of hypoxia mimicking cobalt oxide doped phosphate-based glasses against clinically relevant Gram positive, Gram negative bacteria and a fungal strain
- 2019The Antimicrobial Efficacy of Hypoxia Mimicking Cobalt Oxide Doped Phosphate-Based Glasses against Clinically Relevant Gram Positive, Gram Negative Bacteria and a Fungal Straincitations
- 2018Comprehensive in vitro and in vivo studies of novel melt-derived Nb-substituted 45S5 bioglass reveal its enhanced bioactive properties for bone healingcitations
- 2017Atomic structure of chlorine containing calcium silicate glasses by neutron diffraction and 29Si solid-state NMR
- 2017Atomic structure of chlorine containing calcium silicate glasses by neutron diffraction and 29Si solid-state NMRcitations
- 2017Atomic structure of chlorine containing calcium silicate glasses by neutron diffraction and 29 Si solid-state NMRcitations
- 2017Atomic structure of Mg-based metallic glasses from molecular dynamics and neutron diffraction
- 2017Atomic structure of Mg-based metallic glasses from molecular dynamics and neutron diffractioncitations
- 2016Controlling particle size in the Stöber process and incorporation of calciumcitations
- 2016Bioactive sol-gel glasses at the atomic scale:the complementary use of advanced probe and computer modeling methods
- 2016Bioactive sol-gel glasses at the atomic scale : the complementary use of advanced probe and computer modeling methods
- 2016Probing crystallisation of a fluoro-apatite - mullite system using neutron diffractioncitations
- 2016Bioactive sol-gel glasses at the atomic scalecitations
- 2015Novel sol–gel preparation of (P2O5)0.4–(CaO)0.25–(Na2O)X–(TiO2)(0.35−X) bioresorbable glasses (X = 0.05, 0.1, and 0.15)citations
- 2014The effect of bioglass addition on mechanical and physical properties of photoactive UDMA-TEGDMA resin compositescitations
- 2013Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffractioncitations
- 2012Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regenerationcitations
- 2012Effect of calcium source on structure and properties of sol-gel derived bioactive glassescitations
- 2012Structural characterization of titanium-doped Bioglass using isotopic substitution neutron diffractioncitations
- 2012Titanium phosphate glass microspheres for bone tissue engineering.citations
- 2011An X-ray micro-fluorescence study to investigate the distribution of Al, Si, P and Ca ions in the surrounding soft tissue after implantation of a calcium phosphate-mullite ceramic composite in a rabbit animal modelcitations
- 2010Structure of liquid and glassy ZnCl2citations
- 2009A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass(A (R)) using surface sensitive shallow angle X-ray diffractioncitations
- 2009A molecular dynamics model of the atomic structure of dysprosium alumino-phosphate glasscitations
- 2009Bioactive glass sol-gel foam scaffoldscitations
- 2008Structure and thermal properties of yttrium alumino-phosphate glassescitations
- 2007The structure of the rare-earth phosphate glass (Sm2O3)0.205(P2O5)0.795 studied by anomalous dispersion neutron diffractioncitations
- 2006Direct observation of R...R distances in rare-earth (R) phosphate glasses by magnetic difference neutron diffractioncitations
- 2006Silica-clad neodymium-doped lanthanum phosphate fibers and fiber laserscitations
- 2006Direct observation of R.R distances in rare-earth (R) phosphate glasses by magnetic difference neutron diffractioncitations
- 2004Structure of rare-earth phosphate glasses by neutron diffractioncitations
- 2004Magnetic Differences on GEM - direct observation of closest R.R approach in rare-earth phosphate glasses
- 2003Identification of the relative distribution of rare-earth ions in phosphate glassescitations
- 2003Structure of lanthanum and cerium phosphate glasses by the method of isomorphic substitution in neutron diffractioncitations
- 2003Structure of dysprosium and holmium phosphate glasses by the method of isomorphic substitution in neutron diffractioncitations
Places of action
Organizations | Location | People |
---|
article
A molecular dynamics model of the atomic structure of dysprosium alumino-phosphate glass
Abstract
Molecular dynamics (MD) has been used to identify the relative distribution of dysprosium in the phosphate glass DyAl0.30P3.05O9.62. The MD model has been compared directly with experimental data obtained from neutron diffraction to enable a detailed comparison beyond the total structure factor level. The MD simulation gives{Dy Dy} correlations at 3.80(5) and 6.40(5) Å with relative coordination numbers of 0.8(1) and 7.3(5), thus providing evidence of minority rare-earth clustering within these glasses. The nearest neighbour Dy–O peak occurs at 2.30 Å with each Dy atom having on average 5.8 nearest neighbour oxygen atoms. The MD simulation is consistent with the phosphate network model based on interlinked PO4 tetrahedra where the addition of network modifiers Dy3+ depolymerizes the phosphate network through the breakage of P–(O)–P bonds whilst leaving the tetrahedral units intact. The role of aluminium within the network has been taken into explicit account, and Al is found to be predominantly (78%) tetrahedrally coordinated. In fact all four Al bonds are found to be to P (via an oxygen atom) with negligible amounts of Al–O–Dy bonds present. This provides an important insight into the role of Al additives in improving the mechanical properties of these glasses.