People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chieffi, Alessandro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2015Supernova dust formation and the grain growth in the early universe: the critical metallicity for low-mass star formationcitations
- 2015The metal and dust yields of the first massive starscitations
- 2014Dust grain growth and the formation of the extremely primitive star SDSS J102915+172927citations
- 2014The Origin of the Most Iron-poor Starcitations
- 2013Growth of Dust Grains in a Low-Metallicity Gas and its Effect on the Cloud Fragmentation
- 2009Sulfur in the globular clusters <ASTROBJ>47 Tucanae</ASTROBJ> and <ASTROBJ>NGC 6752</ASTROBJ>citations
- 2008The Peculiar Type Ib Supernova 2006jc: A WCO Wolf-Rayet Star Explosioncitations
Places of action
Organizations | Location | People |
---|
article
The Origin of the Most Iron-poor Star
Abstract
We investigate the origin of carbon-enhanced metal-poor (CEMP) stars starting from the recently discovered [Fe/H] 〈 -7.1 star SMSS J031300. We show that the elemental abundances observed on the surface of SMSS J031300 can be well fit by the yields of faint, metal-free, supernovae (SNe). Using properly calibrated faint SN explosion models, we study, for the first time, the formation of dust grains in such carbon-rich, iron-poor SN ejecta. Calculations are performed assuming both unmixed and uniformly mixed ejecta and taking into account the partial destruction by the SN reverse shock. We find that, due to the paucity of refractory elements beside carbon, amorphous carbon is the only grain species to form, with carbon condensation efficiencies that range between (0.15 and 0.84), resulting in dust yields in the range (0.025-2.25) M <SUB>☉</SUB>. We follow the collapse and fragmentation of a star-forming cloud enriched by the products of these faint SN explosions and we explore the role played by fine structure line cooling and dust cooling. We show that even if grain growth during the collapse has a minor effect of the dust-to-gas ratio, due to C depletion into CO molecules at an early stage of the collapse, the formation of CEMP low-mass stars, such as SMSS J031300, could be triggered by dust cooling and fragmentation. A comparison between model predictions and observations of a sample of C-normal and C-rich metal-poor stars supports the idea that a single common pathway may be responsible for the formation of the first low-mass stars.