People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Madsen, Peter Jeppe
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Preparation of Block Copolymer-Stabilized Microspheres from Commercial Plastics and Their Use as Microplastic Proxies in Degradation Studiescitations
- 2023Enhancement of viscoelastic property of MABS processed by melt compounding and injection moldingcitations
- 2023Antimicrobial silicone skin adhesives facilitated by controlled octenidine release from glycerol compartmentscitations
- 2023Synthesis of poly(ethylene glycol)-co-poly(caprolactone) di- and triblock copolymers and effect of architecture, dispersity and end-functionalisation on their aqueous self-assemblycitations
- 2022One reaction to make highly stretchable or extremely soft silicone elastomers from easily available materialscitations
- 2021Toward a Design for Flowable and Extensible Ionomers: An Example of Diamine-Neutralized Entangled Poly(styrene-co-4-vinylbenzoic acid) Ionomer Meltscitations
- 2021Frequency dependent behavior of silicone slide-ring elastomers
- 2021Novel polyrotaxane cross-linkers as a versatile platform for slide-ring siliconecitations
- 2021Super-stretchable silicone elastomer applied in low voltage actuatorscitations
- 2020Linear Viscoelastic and Nonlinear Extensional Rheology of Diamine Neutralized Entangled Poly(styrene-co-4-vinylbenzoic acid) Ionomer Melts
- 2020Utilizing slide-ring cross-linkers in polysiloxane networks for softer dielectric elastomer actuatorscitations
- 2019Rheological and mechanical properties of polystyrene with hydrogen bonding
- 2019Incorporating polyrotaxane materials in dielectric elastomer actuators
- 2018Enhancing the electro-mechanical properties of polydimethylsiloxane elastomers through blending with poly(dimethylsiloxane-co-methylphenylsiloxane) copolymerscitations
- 2018Enhancing the electro-mechanical properties of polydimethylsiloxane elastomers through blending with poly(dimethylsiloxane-co-methylphenylsiloxane) copolymers Acknowledgments
- 2018Fabrication of microstructured binary polymer brush "corrals" with integral pH sensing for studies of proton transport in model membrane systemscitations
- 2008Supercritical fluids applied to the sol–gel process for preparation of AEROMOSILS/palladium particle nanocomposite catalystcitations
- 2008Facile Synthesis of Well-Defined Hydrophilic Methacrylic Macromonomers Using ATRP and Click Chemistrycitations
Places of action
Organizations | Location | People |
---|
article
Antimicrobial silicone skin adhesives facilitated by controlled octenidine release from glycerol compartments
Abstract
For improved wound healing, antimicrobial adhesives are one path forward. However, with the current challenge of bacterial resistance, it is essential to choose the included drug carefully. Octenidine is an obvious choice due to its broad antimicrobial efficacy and no reported bacterial resistance. In its pure form, octenidine complexes efficiently with the platinum catalyst in the silicone composition, inhibiting the targeted hydrosilylation reaction and hindering curing. This obstacle is overcome by screening octenidine with cyclodextrins in homogeneously dispersed glycerol droplets, suppressing Pt inhibition in the silicone phase. Curing efficiency is demonstrated using rheology, which shows that it is possible to incorporate one wt% of octenidine into glycerol–silicone adhesives in the presence of (2-hydroxypropyl)-β-cyclodextrin without affecting the adhesives’ mechanical properties. The interaction between octenidine and (2-hydroxypropyl)-β-cyclodextrin through an inclusion complex is confirmed by ROESY spectroscopy. Despite this screening, octenidine is still released efficiently from the glycerol–silicone adhesives upon contact with water, and the resulting antimicrobial action is subsequently demonstrated. This new technology constitutes a simple and efficient method for preparing wound care adhesives that actively inhibit the growth of four bacteria strains and one fungus.