Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Roy, Lisa

  • Google
  • 6
  • 34
  • 63

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Impact of Ferroelectric Layer Thickness on Reliability of Back-End-of-Line-Compatible Hafnium Zirconium Oxide Films12citations
  • 2023300 mm CMOS-compatible superconducting HfN and ZrN thin films for quantum applications6citations
  • 2023A Study on Imprint Behavior of Ferroelectric Hafnium Oxide Caused by High-Temperature Annealing9citations
  • 2023300 mm CMOS-compatible superconducting HfN and ZrN thin films for quantum applications6citations
  • 2022Optimization of LPCVD phosphorous-doped SiGe thin films for CMOS-compatible thermoelectric applications15citations
  • 2022Optimization of LPCVD phosphorous-doped SiGe thin films for CMOS-compatible thermoelectric applications15citations

Places of action

Chart of shared publication
Olivo, Ricardo
1 / 6 shared
Kühnel, Kati
3 / 6 shared
Haufe, Nora
2 / 6 shared
Hoffmann, Raik
4 / 4 shared
Schöne, Fred
2 / 2 shared
Döllgast, Moritz
2 / 2 shared
Lehninger, David
2 / 4 shared
Eng, Lukas
2 / 26 shared
Sünbül, Ayse
2 / 2 shared
Seidel, Konrad
2 / 6 shared
Prabhu, Aditya
1 / 1 shared
Kämpfe, Thomas
2 / 8 shared
Emara, Jennifer Salah
2 / 2 shared
Wosnitza, J.
1 / 30 shared
Lederer, Maximilian
3 / 9 shared
Reck, André
1 / 6 shared
Wislicenus, Marcus
2 / 2 shared
Lilienthal-Uhlig, Benjamin
2 / 2 shared
Potjan, Roman Linus
1 / 1 shared
Ostien, Oliver
2 / 2 shared
Mähne, Hannes
1 / 1 shared
Bernert, Kerstin
1 / 1 shared
Thiem, Steffen
1 / 1 shared
Wosnitza, Joachim
1 / 6 shared
Kolodinski, S.
1 / 1 shared
Schwinge, Caroline
2 / 3 shared
Gerlach, G.
1 / 19 shared
Wagner-Reetz, Maik
2 / 4 shared
Biedermann, Kati
2 / 2 shared
Weinreich, Wenke
2 / 10 shared
Wiatr, M.
1 / 1 shared
Kolodinski, Sabine
1 / 1 shared
Wiatr, Maciej
1 / 1 shared
Gerlach, Gerald
1 / 12 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Olivo, Ricardo
  • Kühnel, Kati
  • Haufe, Nora
  • Hoffmann, Raik
  • Schöne, Fred
  • Döllgast, Moritz
  • Lehninger, David
  • Eng, Lukas
  • Sünbül, Ayse
  • Seidel, Konrad
  • Prabhu, Aditya
  • Kämpfe, Thomas
  • Emara, Jennifer Salah
  • Wosnitza, J.
  • Lederer, Maximilian
  • Reck, André
  • Wislicenus, Marcus
  • Lilienthal-Uhlig, Benjamin
  • Potjan, Roman Linus
  • Ostien, Oliver
  • Mähne, Hannes
  • Bernert, Kerstin
  • Thiem, Steffen
  • Wosnitza, Joachim
  • Kolodinski, S.
  • Schwinge, Caroline
  • Gerlach, G.
  • Wagner-Reetz, Maik
  • Biedermann, Kati
  • Weinreich, Wenke
  • Wiatr, M.
  • Kolodinski, Sabine
  • Wiatr, Maciej
  • Gerlach, Gerald
OrganizationsLocationPeople

article

300 mm CMOS-compatible superconducting HfN and ZrN thin films for quantum applications

  • Lederer, Maximilian
  • Wislicenus, Marcus
  • Lilienthal-Uhlig, Benjamin
  • Ostien, Oliver
  • Hoffmann, Raik
  • Wosnitza, Joachim
  • Roy, Lisa
Abstract

<jats:p>The rising interest in increased manufacturing maturity of quantum processing units is pushing the development of alternative superconducting materials for semiconductor fab process technology. However, these are often facing CMOS process incompatibility. In contrast to common CMOS materials, such as Al, TiN, and TaN, reports on the superconductivity of other suitable transition-metal nitrides are scarce, despite potential superiority. Here, we demonstrate fully CMOS-compatible fabrication of HfN and ZrN thin films on state-of-the-art 300 mm semiconductor process equipment, utilizing reactive DC magnetron sputtering on silicon wafers. Measurement of mechanical stress and surface roughness of the thin films demonstrates process compatibility. We investigated the materials phase and stoichiometry by structural analysis. The HfN and ZrN samples exhibit superconducting phase transitions with critical temperatures up to 5.84 and 7.32 K, critical fields of 1.73 and 6.40 T, and coherence lengths of 14 and 7 nm, respectively. A decrease in the critical temperature with decreasing film thickness indicates mesoscopic behavior due to geometric and grain-size limitations. The results promise a scalable application of HfN and ZrN in quantum computing and related fields.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • grain
  • phase
  • thin film
  • reactive
  • semiconductor
  • nitride
  • phase transition
  • Silicon
  • tin
  • superconductivity
  • superconductivity
  • critical temperature