Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kakazei, Gleb

  • Google
  • 1
  • 3
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Full Heusler Fe2CrAl nanogranular films produced by pulsed laser deposition for magnonic applications1citations

Places of action

Chart of shared publication
Vovk, Andrii
1 / 3 shared
Bunyaev, S. A.
1 / 3 shared
Pirota, Kleber Roberto
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Vovk, Andrii
  • Bunyaev, S. A.
  • Pirota, Kleber Roberto
OrganizationsLocationPeople

article

Full Heusler Fe2CrAl nanogranular films produced by pulsed laser deposition for magnonic applications

  • Vovk, Andrii
  • Bunyaev, S. A.
  • Pirota, Kleber Roberto
  • Kakazei, Gleb
Abstract

<jats:p>Obtaining Heusler alloys at the nanoscale with good crystallographic features is appealing for a large range of technological applications, from biomedical to spintronics devices. In particular, Fe2CrAl as bulk is known to present magnetic properties that are strongly sensitive to chemical and physical constraints, such as structural disorder and chemical composition. We report a throughout structural, morphological, and magnetic characterization of Fe2CrAl Heusler nanoparticles obtained by pulsed laser deposition technique. The nanoparticles are composed of slightly off-stoichiometric grains with two distinct morphologies where the role of chemical disorder and inhomogeneity on the magnetic behavior was evaluated. Through DC magnetization measurements, a superparamagnetic behavior is observed and a Gilbert damping of 9×10−3 is acquired from broadband ferromagnetic resonance data, which is comparable with standard materials used for magnonics applications. We discuss the complex magnetostructural coupling that rises on the nanoparticle system, comparing these results with the stoichiometric Fe2CrAl bulk target behavior.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • grain
  • chemical composition
  • pulsed laser deposition
  • magnetization