People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Puthen Veettil, Binesh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Microwave annealing of silicon solar cellscitations
- 2017Controlled Ostwald ripening mediated grain growth for smooth perovskite morphology and enhanced device performancecitations
- 2016Analysis of burn-in photo degradation in low bandgap polymer PTB7 using photothermal deflection spectroscopycitations
- 2016Effect of substrate temperature and radio frequency power on compositional, structural and optical properties of amorphous germanium carbide films deposited using sputteringcitations
- 2016Effect of blend composition on ternary blend organic solar cells using a low band gap polymercitations
- 2015Effect of blend composition on binary organic solar cells using a low band gap polymercitations
- 2014Enhancement of ternary blend organic solar cell efficiency using PTB7 as a sensitizercitations
Places of action
Organizations | Location | People |
---|
article
Microwave annealing of silicon solar cells
Abstract
<p>The microwave annealing of semiconductor devices has not been extensively researched and is rarely utilized in industry, yet it has the potential to significantly reduce the time and cost associated with large-volume semiconductor processing, such as the various heating and annealing processes required in the manufacture of photovoltaic modules. In this paper, we describe microwave annealing of silicon solar cells, the effective passivation of light-induced defects, and a reduction in light-induced degradation. We find that silicon solar cells are heated rapidly in a microwave field and that effective B-O defect passivation can be achieved by microwave processing in less than 2 s. Microwave annealing yields similar results as compared to rapid thermal annealing. </p>