People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chiabrera, Francesco Maria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Operando Electron Microscopy and Impedance Analysis of Solid Oxide Electrolysis and Fuel Cellscitations
- 2023Reconstruction of Low Dimensional Electronic States by Altering the Chemical Arrangement at the SrTiO3 Surfacecitations
- 2022Ion Intercalation in Lanthanum Strontium Ferrite for Aqueous Electrochemical Energy Storage Devicescitations
- 2022The impact of Mn nonstoichiometry on the oxygen mass transport properties of La Sr Mn O thin filmscitations
- 2022Freestanding Perovskite Oxide Filmscitations
- 2022Defect-induced magnetism in homoepitaxial SrTiO3citations
- 2022Defect-induced magnetism in homoepitaxial SrTiO3citations
- 2021Direct Measurement of Oxygen Mass Transport at the Nanoscalecitations
- 2021A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells
- 2019Interface Engineering in Mixed Ionic Electronic Conductor Thin Films for Solid State Devices
- 2019Engineering Transport in Manganites by Tuning Local Nonstoichiometry in Grain Boundariescitations
Places of action
Organizations | Location | People |
---|
article
Defect-induced magnetism in homoepitaxial SrTiO3
Abstract
<jats:p> Along with recent advancements in thin-film technologies, the engineering of complex transition metal oxide heterostructures offers the possibility of creating novel and tunable multifunctionalities. A representative complex oxide is the perovskite strontium titanate (STO), whose bulk form is nominally a centrosymmetric paraelectric band insulator. By tuning the electron doping, chemical stoichiometry, strain, and charge defects of STO, it is possible to control the electrical, magnetic, and thermal properties of such structures. Here, we demonstrate tunable magnetism in atomically engineered STO thin films grown on STO (001) substrates by controlling the atomic charge defects of titanium (V<jats:sub>Ti</jats:sub>) and oxygen (V<jats:sub>O</jats:sub>) vacancies. Our results show that the magnetism can be tuned by altering the growth conditions. We provide deep insights into its association to the following defect types: (i) V<jats:sub>Ti</jats:sub>, resulting in a charge rearrangement and local spin polarization, (ii) V<jats:sub>O</jats:sub>, leading to weak magnetization, and (iii) V<jats:sub>Ti</jats:sub>–V<jats:sub>O</jats:sub> pairs, which lead to the appearance of a sizable magnetic signal. Our results suggest that controlling charged defects is critical for inducing a net magnetization in STO films. This work provides a crucial step for designing magnetic STO films via defect engineering for magnetic and spin-based electronic applications. </jats:p>