Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fuhrer, Michael S.

  • Google
  • 4
  • 52
  • 127

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 20242024 roadmap on 2D topological insulators23citations
  • 2021Ultrathin Ga2O3 Glass72citations
  • 2021Influence of direct deposition of dielectric materials on the optical response of monolayer WS213citations
  • 2017Polypyridyl Iron Complex as a Hole-Transporting Material for Formamidinium Lead Bromide Perovskite Solar Cells19citations

Places of action

Chart of shared publication
Felser, Claudia
1 / 25 shared
Sheng, Xian-Lei
1 / 1 shared
Tadich, Anton
1 / 8 shared
Yang, Shengyuan A.
1 / 1 shared
Zandvliet, Harold
1 / 5 shared
Muralidharan, Bhaskaran
1 / 4 shared
Edmonds, Mark T.
1 / 2 shared
Bampoulis, Pantelis
1 / 3 shared
Bieniek, Maciej
1 / 1 shared
Gooth, Johannes
1 / 4 shared
Pesin, Dmytro
1 / 1 shared
Molenkamp, Laurens W.
1 / 6 shared
Menges, Fabian R.
1 / 1 shared
Thomale, Ronny
1 / 13 shared
Cobden, David
1 / 1 shared
Shekhar, Chandra
1 / 6 shared
Zhao, Mengting
1 / 1 shared
Jia, Junxiang
1 / 1 shared
Vayrynen, Jukka
1 / 1 shared
Claessen, Ralph
1 / 5 shared
Shamim, Saquib
1 / 2 shared
Culcer, Dimitrie
1 / 1 shared
Truscott, Andrew
2 / 6 shared
Haas, Benedikt
1 / 5 shared
Lockrey, Mark N.
1 / 3 shared
Syed, Nitu
1 / 5 shared
Chen, Shao Yu
1 / 1 shared
Pieczarka, Maciej
2 / 3 shared
Bhattacharyya, Semonti
2 / 2 shared
Bao, Qiaoliang
1 / 6 shared
Yun, Tinghe
2 / 2 shared
Wurdack, Matthias
2 / 3 shared
Müller, Johannes
1 / 5 shared
Lu, Yuerui
1 / 1 shared
Schneider, Christian
1 / 19 shared
Zavabeti, Ali
1 / 7 shared
Daeneke, Torben
2 / 14 shared
Ou, Qingdong
1 / 2 shared
Notthoff, Christian
1 / 5 shared
Nguyen, Chung Kim
1 / 4 shared
Kashif, Muhammad K.
1 / 2 shared
Hellerstedt, Jack
1 / 1 shared
Milhuisen, Rebecca A.
1 / 2 shared
Meyer, Steffen
1 / 5 shared
Halstead, Barry
1 / 1 shared
Zee, David
1 / 1 shared
Cheng, Yi Bing
1 / 3 shared
Cashion, John
1 / 3 shared
Spiccia, Leone
1 / 15 shared
Duffy, Noel W.
1 / 3 shared
Benesperi, Iacopo
1 / 8 shared
Bach, Udo
1 / 19 shared
Chart of publication period
2024
2021
2017

Co-Authors (by relevance)

  • Felser, Claudia
  • Sheng, Xian-Lei
  • Tadich, Anton
  • Yang, Shengyuan A.
  • Zandvliet, Harold
  • Muralidharan, Bhaskaran
  • Edmonds, Mark T.
  • Bampoulis, Pantelis
  • Bieniek, Maciej
  • Gooth, Johannes
  • Pesin, Dmytro
  • Molenkamp, Laurens W.
  • Menges, Fabian R.
  • Thomale, Ronny
  • Cobden, David
  • Shekhar, Chandra
  • Zhao, Mengting
  • Jia, Junxiang
  • Vayrynen, Jukka
  • Claessen, Ralph
  • Shamim, Saquib
  • Culcer, Dimitrie
  • Truscott, Andrew
  • Haas, Benedikt
  • Lockrey, Mark N.
  • Syed, Nitu
  • Chen, Shao Yu
  • Pieczarka, Maciej
  • Bhattacharyya, Semonti
  • Bao, Qiaoliang
  • Yun, Tinghe
  • Wurdack, Matthias
  • Müller, Johannes
  • Lu, Yuerui
  • Schneider, Christian
  • Zavabeti, Ali
  • Daeneke, Torben
  • Ou, Qingdong
  • Notthoff, Christian
  • Nguyen, Chung Kim
  • Kashif, Muhammad K.
  • Hellerstedt, Jack
  • Milhuisen, Rebecca A.
  • Meyer, Steffen
  • Halstead, Barry
  • Zee, David
  • Cheng, Yi Bing
  • Cashion, John
  • Spiccia, Leone
  • Duffy, Noel W.
  • Benesperi, Iacopo
  • Bach, Udo
OrganizationsLocationPeople

article

Influence of direct deposition of dielectric materials on the optical response of monolayer WS2

  • Bhattacharyya, Semonti
  • Truscott, Andrew
  • Ou, Qingdong
  • Yun, Tinghe
  • Wurdack, Matthias
  • Notthoff, Christian
  • Fuhrer, Michael S.
  • Daeneke, Torben
  • Nguyen, Chung Kim
  • Pieczarka, Maciej
Abstract

<p>We investigate the effects of direct deposition of different dielectric materials (AlO<sub>x</sub>, SiO<sub>x</sub>, SiN<sub>x</sub>) onto atomically thin TMDC WS<sub>2</sub> on its optical response using atomic layer deposition (ALD), electron beam evaporation (EBE), plasma-enhanced chemical vapor deposition (PECVD), and magnetron sputtering. The photoluminescence measurements reveal quenching of the excitonic emission after all deposition processes, which is linked to the increased level of charge doping and associated rise of the trion emission and/or the localized (bound) exciton emission. Furthermore, Raman spectroscopy allows us to clearly correlate the observed changes in excitonic emission with the increased levels of lattice disorder and defects. In particular, we show that the different doping levels in a monolayer WS<sub>2</sub> capped by a dielectric material are strongly related to the defects in the WS<sub>2</sub> crystal introduced by all capping methods, except for ALD. The strong charge doping in the ALD-capped sample seems to be caused by other factors, such as deviations in the dielectric layer stoichiometry or chemical reactions on the monolayer surface, which makes ALD distinct from all other techniques. Overall, the EBE process results in the lowest level of doping and defect densities and in the largest spectral weight of the exciton emission in the PL. Sputtering is revealed as the most aggressive dielectric capping method for WS<sub>2</sub>, fully quenching its optical response. Our results demonstrate and quantify the effects of direct deposition of dielectric materials onto monolayer WS<sub>2</sub>, which can provide valuable guidance for the efforts to integrate monolayer TMDCs into functional optoelectronic devices.</p>

Topics
  • impedance spectroscopy
  • surface
  • photoluminescence
  • defect
  • Raman spectroscopy
  • evaporation
  • chemical vapor deposition
  • quenching
  • atomic layer deposition