Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mahajan, Amit

  • Google
  • 3
  • 9
  • 67

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020EDM performance characteristics and electrochemical corrosion analysis of Co-Cr alloy and duplex stainless steel: A comparative study19citations
  • 2020Surface Characterization and Tribological Performance Analysis of Electric Discharge Machined Duplex Stainless Steel34citations
  • 2019The structure and thermoelectric properties of tungsten bronze Ba6Ti2Nb8O3014citations

Places of action

Chart of shared publication
Kepaptsoglou, Dm
1 / 47 shared
Azough, Feridoon
1 / 46 shared
Day, Sj
1 / 4 shared
Chen, Kan
1 / 9 shared
Ramasse, Quentin M.
1 / 65 shared
Jiang, Dongting
1 / 1 shared
Ekren, Dursun
1 / 10 shared
Reece, Mj
1 / 11 shared
Freer, Robert
1 / 61 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Kepaptsoglou, Dm
  • Azough, Feridoon
  • Day, Sj
  • Chen, Kan
  • Ramasse, Quentin M.
  • Jiang, Dongting
  • Ekren, Dursun
  • Reece, Mj
  • Freer, Robert
OrganizationsLocationPeople

article

The structure and thermoelectric properties of tungsten bronze Ba6Ti2Nb8O30

  • Kepaptsoglou, Dm
  • Azough, Feridoon
  • Day, Sj
  • Chen, Kan
  • Ramasse, Quentin M.
  • Jiang, Dongting
  • Ekren, Dursun
  • Reece, Mj
  • Mahajan, Amit
  • Freer, Robert
Abstract

Tungsten bronze structured materials have attracted attention as possible thermoelectrics because of their complex crystal structure. In this work, a new thermoelectric ceramic with tetragonal tungsten bronze (TB) structure, Ba6Ti2Nb8O30 (BTN) was prepared by the conventional mixed oxide (MO) route with some samples processed by Spark Plasma Sintering (SPS). Additions of MnO enabled fabrication of high density BTN ceramics at the low sintering temperature of 1580 K in air and by SPS. All samples were annealed in a reducing atmosphere after sintering. X-ray diffraction showed that Ba6Ti2Nb8O30 crystallises with tetragonal symmetry (P4bm space group). HAADF-EELS analysis confirmed the proposed crystal structure and provided exact elemental distributions in the lattice, showing higher concentrations of Ti in the 2b lattice sites compared to the 8d lattice sites. XPS showed the presence of two spin-orbit double peaks at 207.7eV in the reduced BTN samples, confirming the presence of Nb4+ ions. By the use of a sintering aid and optimisation of the processing parameters the ceramics achieved a high power factor of 280 μW/m∙K2 at 873 K. The BTN ceramics showed phonon glass type thermal conduction behaviour with low thermal conductivity of 1.7 to 1.65 W/m.K at 300 to 873 K. A thermoelectric figure of merit (ZT) of 0.14 was achieved at 873 K. This ZT value is comparable with results for many TB thermoelectrics. However, BTN has the advantage of much easier processing.

Topics
  • density
  • impedance spectroscopy
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • glass
  • glass
  • ceramic
  • tungsten
  • thermal conductivity
  • bronze
  • sintering
  • space group
  • electron energy loss spectroscopy