People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adjokatse, Sampson
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2021Photophysics of Two-Dimensional Perovskites—Learning from Metal Halide Substitutioncitations
- 2020Broad Tunability of Carrier Effective Masses in Two-Dimensional Halide Perovskitescitations
- 2020Unraveling the Microstructure of Layered Metal Halide Perovskite Filmscitations
- 2020Unraveling the Microstructure of Layered Metal Halide Perovskite Filmscitations
- 2020Stable cesium formamidinium lead halide perovskites: a comparison of photophysics and phase purity in thin films and single crystalscitations
- 2020Influence of morphology on photoluminescence properties of methylammonium lead tribromide filmscitations
- 2019Stable Cesium Formamidinium Lead Halide Perovskitescitations
- 2019Mechanism of surface passivation of methylammonium lead tribromide single crystals by benzylaminecitations
- 2019Mechanism of surface passivation of methylammonium lead tribromide single crystals by benzylaminecitations
- 2019Scalable fabrication of high-quality crystalline and stable FAPbI(3) thin films by combining doctor-blade coating and the cation exchange reactioncitations
- 2019Scalable fabrication of high-quality crystalline and stable FAPbI(3) thin films by combining doctor-blade coating and the cation exchange reactioncitations
- 2019The Impact of Stoichiometry on the Photophysical Properties of Ruddlesden-Popper Perovskitescitations
- 2019Stable Cesium Formamidinium Lead Halide Perovskites:A Comparison of Photophysics and Phase Purity in Thin Films and Single Crystalscitations
- 2019Effects of strontium doping on the morphological, structural, and photophysical properties of FASnI(3) perovskite thin filmscitations
- 2017Broadly tunable metal halide perovskites for solid-state light-emission applicationscitations
- 2016N-type polymers as electron extraction layers in hybrid perovskite solar cells with improved ambient stabilitycitations
- 2015Photophysics of Organic-Inorganic Hybrid Lead Iodide Perovskite Single Crystalscitations
- 2015Photophysics of Organic-Inorganic Hybrid Lead Iodide Perovskite Single Crystalscitations
- 2015Inside Front Cover: Hybrid Perovskites: Photophysics of Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals (Adv. Funct. Mater. 16/2015)citations
Places of action
Organizations | Location | People |
---|
article
Mechanism of surface passivation of methylammonium lead tribromide single crystals by benzylamine
Abstract
<p>Hybrid organic-inorganic perovskites are semiconductors that have great potential for optoelectronic applications such as light-emitting diodes, photodetectors, and solar cells. In such devices, the surface plays a crucial role in the performance and stability, as it strongly influences the recombination rate of excited charge carriers. It is reported that molecular ligands such as benzylamine are capable of reducing the surface trap state density in thin films. In this work, we aim to clarify the mechanisms that govern the surface passivation of hybrid perovskites by benzylamine. We developed a versatile approach to investigate the influence of benzylamine passivation on the well-defined surface of freshly cleaved hybrid perovskite crystals. We show that benzylamine permanently passivates surface trap states in these single crystals, resulting in enhanced photoluminescence and charge carrier lifetimes. Additionally, we show that exposure to benzylamine leads to the replacement of the methylammonium cations by benzylammonium, thereby creating a thermodynamically more stable two-dimensional (2D) perovskite (BA)(2)PbBr4 on the surface of the three-dimensional crystal. This conversion to a 2D perovskite drives an anisotropic etching of the crystal surface, with the {100} planes being most prone to etching. Initially, square etching pits appear spread over the surface. As time elapses, these etching pits broaden and merge to yield large flat terraces that are oriented normally to the cleaving plane when they form. A thorough understanding of the mechanisms governing the surface passivation is crucially important to optimize and design novel passivation schemes, with the ultimate goal of further advancing the efficiency of optoelectronic devices based on hybrid perovskites.</p>