People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Belnoue, Jonathan P.-H.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024An accurate forming model for capturing the nonlinear material behaviour of multilayered binder-stabilised fabrics and predicting fibre wrinklingcitations
- 2024That’s how the preform crumples: Wrinkle creation during forming of thick binder-stabilised stacks of non-crimp fabricscitations
- 2024Virtual data-driven optimisation for zero defect composites manufacturecitations
- 2024Parametric study on the effect of material properties, tool geometry, and tolerances on preform quality in wind turbine blade manufacturingcitations
- 2024Process models: A cornerstone to composites 4.0citations
- 2024But how can I optimise my high-dimensional problem with only very little data? – A composite manufacturing applicationcitations
- 2023A comprehensive modelling framework for defect prediction in automated fibre placement of composites
- 2023Thickness Control of Autoclave-Molded Composite Laminatescitations
- 2022Intelligent Composites Forming - Simulations For Faster, Higher Quality Manufacture
- 2022A MODELLING FRAMEWORK FOR THE EVOLUTION OF PREPREG TACK UNDER PROCESSING CONDITIONS
- 2022Understanding tack behaviour during prepreg-based composites’ processingcitations
- 2021On the physical relevance of power law-based equations to describe the compaction behaviour of resin infused fibrous materialscitations
- 2021Consolidation-driven wrinkling in carbon/epoxy woven fabric prepregscitations
- 2021Compaction behaviour of continuous fibre-reinforced thermoplastic composites under rapid processing conditionscitations
- 2021Modelling compaction behavior of toughened prepreg during automated fibre placement
- 2021Lab-based in-situ micro-CT observation of gaps in prepreg laminates during consolidation and curecitations
- 2021Hypo-viscoelastic modelling of in-plane shear in UD thermoset prepregscitations
- 2020Predicting consolidation-induced wrinkles and their effects on composites structural performancecitations
- 2020Experimental characterisation of the in-plane shear behaviour of UD thermoset prepregs under processing conditionscitations
- 2020A rapid multi-scale design tool for the prediction of wrinkle defect formation in composite componentscitations
- 2019Modelling of the in-plane shear behavior of uncured thermoset prepreg
- 2019A numerical study of variability in the manufacturing process of thick composite partscitations
- 2019Machine-driven experimentation for solving challenging consolidation problems
- 2019Mitigating forming defects by local modification of dry preformscitations
- 2018Modelling process induced deformations in 0/90 non-crimp fabrics at the meso-scalecitations
- 2018Experimental Characterisation of In-plane Shear Behaviour of Uncured Thermoset Prepregs
- 2018Multi-scale modelling of non-uniform consolidation of uncured toughened unidirectional prepregscitations
- 2016Predicting wrinkle formation in components manufactured from toughened UD prepreg
- 2016Understanding and prediction of fibre waviness defect generation
- 2016Cohesive/Adhesive failure interaction in ductile adhesive joints Part Icitations
- 2016An experimental investigation of the consolidation behaviour of uncured prepregs under processing conditionscitations
- 2015The compaction behaviour of un-cured prepregs
- 2012A numerical model for thick composite-metallic adhesive joints
- 2011Adaptive calibration of a nonlocal coupled damage plasticity model for aluminium alloy AA6082 T0
- 2007Modeling crack initiation and propagation in nickel base superalloys
Places of action
Organizations | Location | People |
---|
document
Multi-scale modelling of non-uniform consolidation of uncured toughened unidirectional prepregs
Abstract
<p>Consolidation is a crucial step in manufacturing of composite parts with prepregs because its role is to eliminate inter-and intra-ply gaps and porosity. Some thermoset prepreg systems are toughened with thermoplastic particles. Depending on their size, thermoplastic particles can be either located in between plies or distributed within the inter-fibre regions. When subjected to transverse compaction, resin will bleed out of low-viscosity unidirectional prepregs along the fibre direction, whereas one would expect transverse squeeze flow to dominate for higher viscosity prepregs. Recent experimental work showed that the consolidation of uncured toughened prepregs involves complex flow and deformation mechanisms where both bleeding and squeeze flow patterns are observed [1]. Micrographs of compacted and cured samples confirm these features as shown in Fig.1. A phenomenological model was proposed [2] where bleeding flow and squeeze flow are combined. A criterion for the transition from shear flow to resin bleeding was also proposed. However, the micrographs also reveal a resin rich layer between plies which may be contributing to the complex flow mechanisms during the consolidation process. In an effort to provide additional insight into these complex mechanisms, this work focuses on the 3D numerical modelling of the compaction of uncured toughened prepregs in the cross-ply configuration described in [1]. A transversely isotropic fluid model is used to describe the flow behaviour of the plies coupled with interplay resin flow of an isotropic fluid. The multi-scale flow model used is based on [3, 4]. A numerical parametric study is carried out where the resin viscosity, permeability and inter-ply thickness are varied to identify the role of important variables. The squeezing flow and the bleeding flow are compared for a range of process parameters to investigate the coupling and competition between the two flow mechanisms. Figure 4 shows the predicted displacement of the sample edge with the multi-scale compaction model after one time step [3]. The ply distortion and resin flow observed in Fig.1 is qualitatively retrieved by the computational model.</p>