Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Depreux, Lucas

  • Google
  • 3
  • 3
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Study of electrostatic actuation for electrocaloric cooling devicescitations
  • 2018Electrostatically actuated thermal switch device for caloric film21citations
  • 2018Electrostatically actuated thermal switch device for caloric film ; Interrupteur thermique électrostatique pour des films en matériaux caloriques21citations

Places of action

Chart of shared publication
Lobue, Martino
3 / 18 shared
Parrain, Fabien
3 / 4 shared
Almanza, Morgan
3 / 5 shared
Chart of publication period
2021
2018

Co-Authors (by relevance)

  • Lobue, Martino
  • Parrain, Fabien
  • Almanza, Morgan
OrganizationsLocationPeople

article

Electrostatically actuated thermal switch device for caloric film

  • Lobue, Martino
  • Parrain, Fabien
  • Depreux, Lucas
  • Almanza, Morgan
Abstract

An innovative thermal switch device using a thin metallic film electrostatically actuated by an electrode mainly conceived for caloric cooling is studied. Our study focuses on the characterization of the thermal conductance at the interface for the "on" and "off" states. Our setup uses the current passing through the metallization of the film as a heater while the temperature is deduced from the measurement of its electrical resistivity. Using a thermal diffusion model and our measurements, we deduce the on and off states thermal conductances and we achieve an on/off conductance ratio of 10 3. Lastly, we use a simple finite-time thermodynamic model to estimate the efficiency at maximum power we would obtain by integrating a standard electrocaloric film in our thermal switch. The result is a micro-refrigerator working at 85% of Carnot efficiency with a power density of 228 W g −1 which is far more than what it have been currently demonstrated.

Topics
  • density
  • impedance spectroscopy
  • resistivity