Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Davies, C.

  • Google
  • 5
  • 33
  • 322

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024On the origin of thermal dependence of 3D printed Inconel 718: roles of atom clustering1citations
  • 2018Low temperature texture development in Nd 2 Fe 14 B/ α -Fe nanocomposite magnets via equal channel angular pressing2citations
  • 2018Low temperature texture development in Nd2Fe14B/<i>α</i>-Fe nanocomposite magnets via equal channel angular pressing2citations
  • 2018Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process302citations
  • 2008Nanocomposite TiN films with embedded MoS2 inorganic fullerenes produced by combining supersonic cluster beam deposition with cathodic arc reactive evaporation15citations

Places of action

Chart of shared publication
Pham, M-S
1 / 6 shared
Al-Lami, J.
1 / 2 shared
Theska, F.
1 / 4 shared
Primig, S.
1 / 26 shared
Ahuactzin-Garcia, E.
1 / 1 shared
Molotnikov, A.
2 / 9 shared
Saiz Garitaonandia, José Javier
1 / 7 shared
Kishimoto, H.
1 / 2 shared
Besley, L.
2 / 2 shared
Kato, A.
2 / 9 shared
Suzuki, K.
2 / 25 shared
Garitaonandia, J. S.
1 / 22 shared
Kishimoto, Hidefumi
1 / 2 shared
Crothers, T.
1 / 4 shared
Giustino, F.
1 / 11 shared
Wright, A.
1 / 8 shared
Johnston, M.
1 / 30 shared
Patel, J.
1 / 21 shared
Filip, M.
1 / 3 shared
Verdi, C.
1 / 3 shared
Milot, R.
1 / 6 shared
Herz, L.
1 / 23 shared
Ducati, C.
1 / 44 shared
Sedlackova, K.
1 / 2 shared
Piseri, P.
1 / 21 shared
Podesta, A.
1 / 21 shared
Milani, P.
1 / 56 shared
Piazzoni, C.
1 / 2 shared
Hatto, P.
1 / 1 shared
Bardizza, G.
1 / 1 shared
Bonati, Matteo Luca Maria
1 / 1 shared
Blomqvist, M.
1 / 4 shared
Radnoczi, G.
1 / 1 shared
Chart of publication period
2024
2018
2008

Co-Authors (by relevance)

  • Pham, M-S
  • Al-Lami, J.
  • Theska, F.
  • Primig, S.
  • Ahuactzin-Garcia, E.
  • Molotnikov, A.
  • Saiz Garitaonandia, José Javier
  • Kishimoto, H.
  • Besley, L.
  • Kato, A.
  • Suzuki, K.
  • Garitaonandia, J. S.
  • Kishimoto, Hidefumi
  • Crothers, T.
  • Giustino, F.
  • Wright, A.
  • Johnston, M.
  • Patel, J.
  • Filip, M.
  • Verdi, C.
  • Milot, R.
  • Herz, L.
  • Ducati, C.
  • Sedlackova, K.
  • Piseri, P.
  • Podesta, A.
  • Milani, P.
  • Piazzoni, C.
  • Hatto, P.
  • Bardizza, G.
  • Bonati, Matteo Luca Maria
  • Blomqvist, M.
  • Radnoczi, G.
OrganizationsLocationPeople

article

Low temperature texture development in Nd2Fe14B/<i>α</i>-Fe nanocomposite magnets via equal channel angular pressing

  • Molotnikov, A.
  • Garitaonandia, J. S.
  • Davies, C.
  • Besley, L.
  • Kato, A.
  • Suzuki, K.
  • Kishimoto, Hidefumi
Abstract

<jats:p>While suitable texture has been developed in Nd2Fe14B/α-Fe nanocomposites via thermomechanical processing methods such as die upsetting by incorporating low melting point eutectic Nd-Cu additives, significant grain coarsening occurs during this process due to the high temperature and long timescales involved, resulting in a loss of exchange coupling. Equal channel angular pressing (ECAP) is a severe plastic deformation technique which has been successfully used to produce a suitable texture in single-phase Nd2Fe14B at temperatures on the order of 500°C while preserving grain sizes on the order of 20-30nm. We investigate the development of texture in a commercial Nd2Fe14B/α-Fe nanocomposite alloy with added Nd90Cu10 produced via ECAP and then characterise it using texture x-ray diffraction and magnetic measurements. It is found that initial texture can be developed in this nanocomposite system at T = 520°C via ECAP. The average grain size of Nd2Fe14B as measured via X-ray diffraction after ECAP remains below 50nm with a developed texture. The effect of varying the amount of Nd90Cu10 additive is also investigated. It is found that with decreasing Nd90Cu10, the degree of texture is reduced while the volume fraction of α-Fe increases. This work demonstrates the development of texture in nanocomposite Nd2Fe14B/α-Fe with Nd-Cu additives whilst maintaining a grain size of approximately 50nm.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • grain
  • grain size
  • phase
  • x-ray diffraction
  • texture