People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khiat, Ali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2019An electrical characterisation methodology for identifying the switching mechanism in TiO2 memristive stackscitations
- 2019A digital in-analogue out logic gate based on metal-oxide memristor devices
- 2019An electrical characterisation methodology for identifying the switching mechanism in TiO 2 memristive stackscitations
- 2018Processing big-data with memristive technologiescitations
- 2018A comprehensive technology agnostic RRAM characterisation protocol
- 2018Interface barriers at Metal – TiO2 contacts
- 2017Impact of ultra-thin Al2O3–y layers on TiO2–x ReRAM switching characteristicscitations
- 2017Impact of ultra-thin Al 2 O 3–y layers on TiO 2–x ReRAM switching characteristicscitations
- 2016X-ray spectromicroscopy investigation of soft and hard breakdown in RRAM devicescitations
- 2016An amorphous titanium dioxide metal insulator metal selector device for resistive random access memory crossbar arrays with tunable voltage margincitations
- 2016Engineering the switching dynamics of TiOx-based RRAM with Al dopingcitations
- 2016Al-doping engineered electroforming and switching dynamics of TiOx ReRAM devices
Places of action
Organizations | Location | People |
---|
article
An amorphous titanium dioxide metal insulator metal selector device for resistive random access memory crossbar arrays with tunable voltage margin
Abstract
Resistive random access memory (ReRAM) crossbar arrays have become one of the most promising candidates for next-generation non volatile memories. To become a mature technology, the sneak path current issue must be solved without compromising all the advantages that crossbars offer in terms of electrical performances and fabrication complexity. Here, we present a highly integrable access device based on nickel and sub-stoichiometric amorphous titanium dioxide (TiO<sub>2-x</sub>), in a metal insulator metal crossbar structure. The high voltage margin of 3V, amongst the highest reported for monolayer selector devices, and the good current density of 10<sup>4</sup>A/cm<sup>2</sup> make it suitable to sustain ReRAM read and write operations, effectively tackling sneak currents in crossbars without compromising fabrication complexity in a 1 Selector 1 Resistor (1S1R) architecture. Furthermore, the voltage margin is found to be tunable by an annealing step without affecting the device's characteristics.