Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Teixeira, Jm

  • Google
  • 8
  • 32
  • 172

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2014Analysis of a fibre-optic sensor design based on SPR in nanowire metamaterial films5citations
  • 2013Correlations among magnetic, electrical and magneto-transport properties of NiFe nanohole arrays10citations
  • 2011Resonant Tunneling through Electronic Trapping States in Thin MgO Magnetic Junctions49citations
  • 2009The effect of pinhole formation/growth on the tunnel magnetoresistance of MgO-based magnetic tunnel junctions24citations
  • 2009Electroforming, magnetic and resistive switching in MgO-based tunnel junctions36citations
  • 2008Structural, magnetic and transport properties of ion beam deposited Co thin films15citations
  • 2005Multi-step and anomalous reproducible behaviour of the electrical resistivity near the first-order magnetostructural transition of Gd-5(Si0.1Ge0.9)(4)13citations
  • 2004Peculiar magnetic and electrical properties near structural percolation in metal-insulator granular layers20citations

Places of action

Chart of shared publication
Guerreiro, A.
1 / 4 shared
Hierro Rodriguez, A.
1 / 2 shared
Leite, It
1 / 1 shared
Fernandes, P.
1 / 3 shared
Jorge, Pas
1 / 17 shared
De Teresa, Jm
1 / 4 shared
Araujo, Jp
7 / 91 shared
Leitao, Dc
2 / 6 shared
Sousa, Ct
1 / 14 shared
Sousa, Jb
7 / 16 shared
Michalik, Jm
1 / 1 shared
Ventura, Joao
6 / 38 shared
Pinto, S.
1 / 5 shared
Vazquez, M.
1 / 5 shared
Freitas, Pp
4 / 7 shared
Cardoso, S.
2 / 10 shared
Wisniowski, P.
3 / 3 shared
Carpinteiro, F.
2 / 4 shared
Fermento, R.
2 / 2 shared
Pereira, Am
2 / 35 shared
Ibarra, Mr
1 / 5 shared
Morellon, L.
1 / 7 shared
Correia, Fc
1 / 2 shared
Braga, Me
1 / 2 shared
Magen, C.
1 / 10 shared
Algarabel, Pa
1 / 4 shared
Pinto, Rp
1 / 1 shared
Pogorelov, Yg
1 / 10 shared
Santos, Jam
1 / 1 shared
Silva, Rfa
1 / 1 shared
Snoeck, E.
1 / 12 shared
Kakazei, Gn
1 / 8 shared
Chart of publication period
2014
2013
2011
2009
2008
2005
2004

Co-Authors (by relevance)

  • Guerreiro, A.
  • Hierro Rodriguez, A.
  • Leite, It
  • Fernandes, P.
  • Jorge, Pas
  • De Teresa, Jm
  • Araujo, Jp
  • Leitao, Dc
  • Sousa, Ct
  • Sousa, Jb
  • Michalik, Jm
  • Ventura, Joao
  • Pinto, S.
  • Vazquez, M.
  • Freitas, Pp
  • Cardoso, S.
  • Wisniowski, P.
  • Carpinteiro, F.
  • Fermento, R.
  • Pereira, Am
  • Ibarra, Mr
  • Morellon, L.
  • Correia, Fc
  • Braga, Me
  • Magen, C.
  • Algarabel, Pa
  • Pinto, Rp
  • Pogorelov, Yg
  • Santos, Jam
  • Silva, Rfa
  • Snoeck, E.
  • Kakazei, Gn
OrganizationsLocationPeople

article

The effect of pinhole formation/growth on the tunnel magnetoresistance of MgO-based magnetic tunnel junctions

  • Freitas, Pp
  • Araujo, Jp
  • Wisniowski, P.
  • Sousa, Jb
  • Carpinteiro, F.
  • Ventura, Joao
  • Teixeira, Jm
Abstract

In this study, we focus on how the formation and enlargement of metallic pinholes in MgO barriers (induced by large electrical currents) affect the tunnel magnetoresistance (TMR) of low and high resistance (R) magnetic tunnel junctions. The junctions were deposited by physical vapor deposition with barrier thicknesses of either 0.75 or 1.35 nm. For the parallel state, temperature-dependent R(T) measurements readily revealed a metallic conductance in the low-R sample, indicating that pinholes are already present in its thin barrier; a slight R(T) decrease with increasing temperature is observed for the high-R junction. After applying large current pulses to the low-R sample, we observe that the initially small R-decrease (similar to 6%) is accompanied by a significant TMR increase (similar to 20% at 20 K). Higher applied electrical currents continue to decrease R, leading to a gradual but steady TMR decrease. In contrast, the high-R sample exhibits a sharp and immediate decrease in TMR as soon as the first pinhole is formed. The origin of these effects will be discussed in terms of a thermally induced improvement of the barrier/electrode interfaces and the possibility of a magnetoresistance mechanism occurring through the metallic pinholes. (c) 2009 American Institute of Physics. [doi:10.1063/1.3236512]

Topics
  • impedance spectroscopy
  • physical vapor deposition