People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gerber, Andreas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Local stress engineering of magnetic anisotropy in soft magnetic thin films
Abstract
<p>The magnetic anisotropy of amorphous thin films was modified laterally by masked ion irradiation without alteration of the intrinsic magnetic properties. The changes were introduced by local ion implantation in a protection layer, causing additional stress-induced magnetic anisotropy in the magnetostrictive layer. The underlying local variation in magnetic anisotropy was modeled and confirmed experimentally. The described method, relying purely on magnetoelastics, introduces a new path to the alteration of magnetic properties subsequent to magnetic film preparation. With the use of the resulting artificial magnetization patterns, it is possible to tailor the ferromagnetic thin film structure used in magnetoelectronic applications.</p>