People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Swain, M. V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2012A method to determine site-specific, anisotropic fracture toughness in biological materialscitations
- 2009Nanoindentation of ion-implanted crystalline germaniumcitations
- 2009Effect of microstructure upon elastic behaviour of human tooth enamelcitations
- 2008Thickness-dependent phase transformation in nanoindented germanium thin filmscitations
- 2004Phase transformations induced in relaxed amorphous silicon by indentation at room temperaturecitations
- 2003In situ electrical characterization of phase transformations in Si during indentationcitations
- 2003Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritiscitations
- 2002In-situ electrical characterization of Si during nanoindentation
- 2001Mechanical deformation in silicon by micro-indentationcitations
- 2000Transmission electron microscopy observation of deformation microstructure under spherical indentation in siliconcitations
Places of action
Organizations | Location | People |
---|
article
Phase transformations induced in relaxed amorphous silicon by indentation at room temperature
Abstract
<p>The deformation behavior of self-ion-implanted amorphous-Si (a-Si) has been studied using spherical nanoindentation in both relaxed (annealed) and unrelaxed (as-implanted) a-Si. Interestingly, phase transformations were clearly observed in the relaxed state, with the load-unload curves from these samples displaying characteristic discontinuities and cross-sectional transmission electron microscopy images indicating the presence of high-pressure crystalline phases Si-III and Si-XII following pressure release. Thus, an amorphous to crystalline phase transformation has been induced by indentation at room temperature. In contrast, no evidence of a phase transformation was observed in unrelaxed a-Si, which appeared to deform via plastic flow of the amorphous phase. Furthermore, in situ electrical measurements clearly indicate the presence of a metallic Si phase during loading of relaxed a-Si but no such behavior was observed for unrelaxed a-Si</p>