Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abed, Tara Moghareh

  • Google
  • 2
  • 12
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Experimental investigation into the effects of cast-iron pipe corrosion on GPR detection performance in clay soils3citations
  • 2011Pipeline Engineering in the Ground: the impact of Ground Conditions on Pipeline Condition and Maintenance Operations1citations

Places of action

Chart of shared publication
Torbaghan, Mehran Eskandari
1 / 2 shared
Rogers, Christopher
2 / 5 shared
Hojjati, Aryan
1 / 1 shared
Chapman, David
2 / 12 shared
Foo, Kae
1 / 2 shared
Hao, Tong
1 / 1 shared
Wazlan, S.
1 / 1 shared
Shirgiri, Nastaran
1 / 1 shared
Metje, Nicole
1 / 10 shared
Royal, Alexander
1 / 1 shared
Atkins, Philip
1 / 3 shared
Curioni, Giulio
1 / 4 shared
Chart of publication period
2020
2011

Co-Authors (by relevance)

  • Torbaghan, Mehran Eskandari
  • Rogers, Christopher
  • Hojjati, Aryan
  • Chapman, David
  • Foo, Kae
  • Hao, Tong
  • Wazlan, S.
  • Shirgiri, Nastaran
  • Metje, Nicole
  • Royal, Alexander
  • Atkins, Philip
  • Curioni, Giulio
OrganizationsLocationPeople

article

Experimental investigation into the effects of cast-iron pipe corrosion on GPR detection performance in clay soils

  • Torbaghan, Mehran Eskandari
  • Rogers, Christopher
  • Abed, Tara Moghareh
  • Hojjati, Aryan
  • Chapman, David
Abstract

<p>Cast iron water distribution pipes are used widely in the UK and worldwide. Corrosion of these cast iron pipes often occurs due to an electrochemical process where the pipe is buried directly in a chemically aggressive ground (as is the case for some clays). The electrochemical process changes the pH environment and releases iron ions into the clay. This can cause chemical alteration of the clay minerals and corrosion products, such as iron oxide, hydroxide, and aqueous salts, to form in the soil. These chemical interactions are complex and time dependent, and can potentially result in pipe failure, and thus the conditions under which they occur need to be understood. Ground penetrating radar (GPR) has been proposed for routinely detecting, assessing, and monitoring buried cast iron pipes, and thus it is important to know how these chemical changes affect the electromagnetic properties of soil. A bespoke set of laboratory experiments was devised to simulate and accelerate cast iron corrosion (using electrokinetics) and ion migration processes in two types of clay, namely Kaolin clay and Oxford clay. Tests were conducted for periods of up to 3 months using both inert electrodes and a cast iron disc as the anode. The changes in the geotechnical properties (undrained shear strength, moisture content, and Atterberg limits), the geophysical properties (permittivity), and the geochemical properties (iron content, pH, and conductivity) were monitored. The results indicated that the Oxford clay was much more aggressive in terms of the corrosion activity compared to the Kaolin clay. The laboratory results were used in GPR simulations in relation to the detection of a buried cast iron pipe. The results showed that the chemically induced changes to the Kaolin clay did not materially affect the performance of GPR to detect the cast iron pipe, whereas for a pipe buried in Oxford clay the (greatly accelerated) chemically-induced changes were sufficiently advanced after approximately 7-8 weeks to cause the GPR to be unable to detect the corroded pipe. </p>

Topics
  • impedance spectroscopy
  • mineral
  • corrosion
  • experiment
  • simulation
  • strength
  • iron
  • cast iron