People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cheng, Hongyang
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Densification of visco-elastic powders during free and pressure-assisted sinteringcitations
- 2022Visco-elastic sintering kinetics in virgin and aged polymer powderscitations
- 2021Neck growth kinetics during polymer sintering for powder-based processescitations
- 2020Elastic wave propagation in dry granular mediacitations
- 2018An iterative sequential Monte Carlo filter for Bayesian calibration of DEM models
- 2017Bayesian calibration of microCT-based DEM simulations for predicting the effective elastic response of granular materials
Places of action
Organizations | Location | People |
---|
document
Neck growth kinetics during polymer sintering for powder-based processes
Abstract
To prevent texture defects in powder-based processes, the sintering time needs to be adjusted such that a certain amount of coalescence is achieved. However, predicting the required sintering time is extremely challenging to assess in materials such as polymers because the kinetics exhibit both elastic and viscous characteristics when undergoing deformation. The present work introduces a computational approach to model the viscoelastic effect in the sintering of particles. The model contains three stages, three different mechanisms driven by adhesive inter-surface forces and surface tension, which describes the non-linear sintering behaviour. Experimental data from the binary coalescence of Polystyrene (PS), Polyamide (PA) 12 and PEEK 450PF particles are employed to calibrate the contact model, as implemented in MercuryDPM, an open-source software package. Using machine learning-based Bayesian calibration, good agreement is obtained between the experimental data and the numerical results. The findings will be used in future studies to predict densification rates in powder-based processes.