People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Godard, Marie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022The 3.4 µm absorption band profile : comparison of aliphatic interstellar dust observations and laboratory analogues properties
- 2017Swift heavy ion irradiation of interstellar dust analogues. Small carbonaceous species released by cosmic rayscitations
- 2016Mantle formation, coagulation, and the origin of cloud/core shine. I. Modelling dust scattering and absorption in the infraredcitations
- 2014Hydrogenated amorphous carbons : evolution of interstellar carbon dust
- 2012Effects of cosmic rays on hydrocarbon interstellar dustcitations
- 2011Hydrogenated amorphous carbons: observations, synthesis and characterisation in laboratory of interstellar dust
- 2011Ion irradiation of carbonaceous interstellar analogues. Effects of cosmic rays on the 3.4 μm interstellar absorption bandcitations
- 2011The influence of cosmic rays on the 3.4 microns interstellar absorption band
- 2010Photoluminescence of hydrogenated amorphous carbons: Wavelength-dependent yield and implications for the extended red emissioncitations
- 2009Hydrogenated amorphous carbons photoluminescence and astrophysical implications for the extended red emission
Places of action
Organizations | Location | People |
---|
article
Ion irradiation of carbonaceous interstellar analogues. Effects of cosmic rays on the 3.4 μm interstellar absorption band
Abstract
Context. A 3.4 μm absorption band (around 2900 cm<SUP>-1</SUP>), assigned to aliphatic C-H stretching modes of hydrogenated amorphous carbons (a-C:H), is widely observed in the diffuse interstellar medium, but disappears or is modified in dense clouds. This spectral difference between different phases of the interstellar medium reflects the processing of dust in different environments. Cosmic ray bombardment is one of the interstellar processes that make carbonaceous dust evolve. <BR /> Aims: We investigate the effects of cosmic rays on the interstellar 3.4 μm absorption band carriers. <BR /> Methods: Samples of carbonaceous interstellar analogues (a-C:H and soot) were irradiated at room temperature by swift ions with energy in the MeV range (from 0.2 to 160 MeV). The dehydrogenation and chemical bonding modifications that occurred during irradiation were studied with IR spectroscopy. <BR /> Results: For all samples and all ions/energies used, we observed a decrease of the aliphatic C-H absorption bands intensity with the ion fluence. This evolution agrees with a model that describes the hydrogen loss as caused by the molecular recombination of two free H atoms created by the breaking of C-H bonds by the impinging ions. The corresponding destruction cross section and asymptotic hydrogen content are obtained for each experiment and their behaviour over a large range of ion stopping powers are inferred. Using elemental abundances and energy distributions of galactic cosmic rays, we investigated the implications of these results in different astrophysical environments. The results are compared to the processing by UV photons and H atoms in different regions of the interstellar medium. <BR /> Conclusions: The destruction of aliphatic C-H bonds by cosmic rays occurs in characteristic times of a few 10<SUP>8</SUP> years, and it appears that even at longer time scales, cosmic rays alone cannot explain the observed disappearance of this spectral signature in dense regions. In diffuse interstellar medium, the formation by atomic hydrogen prevails over the destruction by UV photons (destruction by cosmic rays is negligible in these regions). Only the cosmic rays can penetrate into dense clouds and process the corresponding dust. However, they are not efficient enough to completely dehydrogenate the 3.4 μm carriers during the cloud lifetime. This interstellar component should be destroyed in interfaces between diffuse and dense interstellar regions where photons still penetrate but hydrogen is in molecular form....