Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gordon, K.

  • Google
  • 6
  • 41
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2020Studying Nearby Low-Metallicity Environments with Scyllacitations
  • 2010The mass-loss return from evolved stars to the Large Magellanic Cloud. III. Dust properties for carbon-rich asymptotic giant branch stars21citations
  • 2009Dust Around Red Supergiants in the Magellanic Cloudscitations
  • 2009Dust Around Red Supergiants in the Magellanic Cloudscitations
  • 2009Dust Around Red Supergiants in the Magellanic Cloudscitations
  • 2006Spitzer SAGE Survey of the Large Magellanic Cloud: Project Overviewcitations

Places of action

Chart of shared publication
Murray, C.
1 / 6 shared
Hagen, L.
1 / 1 shared
Team, Scylla-Hst
1 / 1 shared
Lindberg, Christina W.
1 / 1 shared
Woods, P. M.
1 / 1 shared
Marengo, M.
1 / 6 shared
Kemper, F.
1 / 5 shared
Speck, A. K.
1 / 1 shared
Meixner, M.
1 / 6 shared
Srinivasan, S.
1 / 17 shared
Sloan, G. C.
1 / 17 shared
Volk, K.
1 / 4 shared
Sargent, B. A.
1 / 3 shared
Matsuura, Mikako
1 / 9 shared
Tielens, A. G. G. M.
1 / 16 shared
Freeman, W.
3 / 4 shared
Silva, D.
2 / 9 shared
Levesque, E.
3 / 4 shared
Massey, P.
2 / 3 shared
Olsen, K.
3 / 4 shared
Plez, B.
3 / 4 shared
Nordhaus, J.
3 / 6 shared
Chatelain, J.
3 / 4 shared
Bright, Stacey N.
3 / 4 shared
Clayton, G.
2 / 5 shared
Bernard, J.
1 / 7 shared
Blum, R.
1 / 1 shared
Indebetouw, R.
1 / 5 shared
Meade, M.
1 / 2 shared
Whitney, B.
1 / 2 shared
Vijh, U.
1 / 2 shared
Misselt, K.
1 / 3 shared
Block, M.
1 / 3 shared
For, B.
1 / 2 shared
Engelbracht, C.
1 / 3 shared
Team, S.
1 / 1 shared
Meixner, Margaret
1 / 12 shared
Leitherer, C.
1 / 3 shared
Hora, J.
1 / 1 shared
Babler, B.
1 / 4 shared
Tielens, A. G.
1 / 1 shared
Chart of publication period
2020
2010
2009
2006

Co-Authors (by relevance)

  • Murray, C.
  • Hagen, L.
  • Team, Scylla-Hst
  • Lindberg, Christina W.
  • Woods, P. M.
  • Marengo, M.
  • Kemper, F.
  • Speck, A. K.
  • Meixner, M.
  • Srinivasan, S.
  • Sloan, G. C.
  • Volk, K.
  • Sargent, B. A.
  • Matsuura, Mikako
  • Tielens, A. G. G. M.
  • Freeman, W.
  • Silva, D.
  • Levesque, E.
  • Massey, P.
  • Olsen, K.
  • Plez, B.
  • Nordhaus, J.
  • Chatelain, J.
  • Bright, Stacey N.
  • Clayton, G.
  • Bernard, J.
  • Blum, R.
  • Indebetouw, R.
  • Meade, M.
  • Whitney, B.
  • Vijh, U.
  • Misselt, K.
  • Block, M.
  • For, B.
  • Engelbracht, C.
  • Team, S.
  • Meixner, Margaret
  • Leitherer, C.
  • Hora, J.
  • Babler, B.
  • Tielens, A. G.
OrganizationsLocationPeople

article

The mass-loss return from evolved stars to the Large Magellanic Cloud. III. Dust properties for carbon-rich asymptotic giant branch stars

  • Woods, P. M.
  • Marengo, M.
  • Kemper, F.
  • Speck, A. K.
  • Meixner, M.
  • Srinivasan, S.
  • Sloan, G. C.
  • Volk, K.
  • Sargent, B. A.
  • Gordon, K.
  • Matsuura, Mikako
  • Tielens, A. G. G. M.
Abstract

We present a radiative transfer model for the circumstellar dust shell around a Large Magellanic Cloud (LMC) long-period variable (LPV) previously studied as part of the Optical Gravitational Lensing Experiment (OGLE) survey of the LMC. OGLE LMC LPV 28579 (SAGE J051306.40-690946.3) is a carbon-rich asymptotic giant branch (AGB) star for which we have Spitzer broadband photometry and spectra from the SAGE and SAGE-Spec programs along with broadband UBVIJHK<SUB>s</SUB> photometry. By modeling this source, we obtain a baseline set of dust properties to be used in the construction of a grid of models for carbon stars. We reproduce the spectral energy distribution of the source using a mixture of amorphous carbon and silicon carbide with 15% SiC by mass. The grain sizes are distributed according to the KMH model, with γ = 3.5, a<SUB>min</SUB> = 0.01 μm and a<SUB>0</SUB> = 1.0 μm. The best-fit model produces an optical depth of 0.28 for the dust shell at the peak of the SiC feature (11.3 μm), with an inner radius of about 1430 R_⊙ or 4.4 times the stellar radius. The temperature at this inner radius is 1310 K. Assuming an expansion velocity of 10 km s<SUP>-1</SUP>, we obtain a dust mass-loss rate of 2.5 × 10<SUP>-9</SUP> M_⊙ yr<SUP>-1</SUP>. We calculate a 15% variation in this mass-loss rate by testing the sensitivity of the fit to variation in the input parameters. We also present a simple model for the molecular gas in the extended atmosphere that could give rise to the 13.7 μm feature seen in the spectrum. We find that a combination of CO and C<SUB>2</SUB>H<SUB>2</SUB> gas at an excitation temperature of about 1000 K and column densities of 3 × 10<SUP>21</SUP> cm<SUP>-2</SUP> and 10<SUP>19</SUP> cm<SUP>-2</SUP> respectively are able to reproduce the observations. Given that the excitation temperature is close to the temperature of the dust at the inner radius, most of the molecular contribution probably arises from this region. The luminosity corresponding to the first epoch of SAGE observations is 6580 L_⊙. For an effective temperature of about 3000 K, this implies a stellar mass of 1.5-2 M_⊙ and an age of 1-2.5 Gyr for OGLE LMC LPV 28579. We calculate a gas mass-loss rate of 5.0 × 10<SUP>-7</SUP> M_⊙ yr<SUP>-1</SUP> assuming a gas:dust ratio of 200. This number is comparable to the gas mass-loss rates estimated from the period, color and 8 μm flux of the source....

Topics
  • impedance spectroscopy
  • amorphous
  • Carbon
  • grain
  • grain size
  • experiment
  • carbide
  • Silicon