Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fletcher, Philip J.

  • Google
  • 10
  • 36
  • 73

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Molecularly rigid porous polyamine host enhances barium titanate catalysed H 2 O 2 generation †citations
  • 2024Molecularly Rigid Porous Polyamine Host Enhances Barium Titanate Catalysed H2O2 Generationcitations
  • 2021Defect-Engineered β-MnO2-δ Precursors Control the Structure-Property Relationships in High-Voltage Spinel LiMn1.5Ni0.5O4-δ25citations
  • 2021Ionic Diode and Molecular Pump Phenomena Associated with Caffeic Acid Accumulated into an Intrinsically Microporous Polyamine (PIM-EA-TB)10citations
  • 2020Indirect (Hydrogen-Driven) Electrodeposition of Porous Silver onto a Palladium Membrane2citations
  • 2020Effects of dissolved gases on partial anodic passivation phenomena at copper microelectrodes immersed in aqueous NaCl5citations
  • 2020Linking the Cu(II/I) and the Ni(IV/II) Potentials to Subsequent Passive Film Breakdown for a Cu-Ni Alloy in Aqueous 0.5 M NaCl3citations
  • 2019Effects of Dissolved Gases on Partial Anodic Passivation Phenomena at Copper Microelectrodes Immersed in Aqueous NaClcitations
  • 2019Polymer of Intrinsic Microporosity (PIM-7) Coating Affects Triphasic Palladium Electrocatalysis14citations
  • 2018Polymer of Intrinsic Microporosity (PIM-7) Coating Affects Triphasic Palladium Electrocatalysis14citations

Places of action

Chart of shared publication
Bowen, Chris R.
1 / 12 shared
Marken, Frank
10 / 91 shared
Folli, Andrea
2 / 8 shared
Pham, Thuy-Phuong T.
1 / 1 shared
Carta, Mariolino
3 / 18 shared
Dunn, Steve
2 / 8 shared
Karunakaran, Akalya
2 / 2 shared
Mckeown, Neil B.
5 / 21 shared
Pham Thi, Thuy Phuong
1 / 1 shared
Bowen, Christopher R.
1 / 96 shared
Sentsho, Zeldah
1 / 1 shared
Venter, Andrew
1 / 1 shared
Ozoemena, Kenneth I.
1 / 1 shared
Haruna, Aderemi B.
1 / 1 shared
Forbes, Roy P.
1 / 1 shared
Rodella, Cristiane B.
1 / 2 shared
Barrett, Dean
1 / 1 shared
Mwonga, Patrick
1 / 1 shared
Malpass-Evans, R.
1 / 5 shared
Li, Zhongkai
1 / 1 shared
Mathwig, Klaus
1 / 1 shared
Wang, Lina
1 / 2 shared
Madrid, Elena
1 / 6 shared
Kanyanee, Tinakorn
1 / 1 shared
Dawes, Jonathan H. P.
2 / 2 shared
Langley, Amelia R.
1 / 1 shared
Elmer, Aisling
1 / 1 shared
Langley, Amelia
2 / 2 shared
Bhattacharya, Swapan K.
2 / 3 shared
Rochat, Sébastien
1 / 2 shared
Rong, Yuanyang
2 / 7 shared
Dalton, Alan B.
2 / 15 shared
Mahajan, Ankita
2 / 3 shared
Burrows, Andrew D.
1 / 17 shared
Burrows, Andrew
1 / 6 shared
Rochat, Sebastien
1 / 10 shared
Chart of publication period
2024
2021
2020
2019
2018

Co-Authors (by relevance)

  • Bowen, Chris R.
  • Marken, Frank
  • Folli, Andrea
  • Pham, Thuy-Phuong T.
  • Carta, Mariolino
  • Dunn, Steve
  • Karunakaran, Akalya
  • Mckeown, Neil B.
  • Pham Thi, Thuy Phuong
  • Bowen, Christopher R.
  • Sentsho, Zeldah
  • Venter, Andrew
  • Ozoemena, Kenneth I.
  • Haruna, Aderemi B.
  • Forbes, Roy P.
  • Rodella, Cristiane B.
  • Barrett, Dean
  • Mwonga, Patrick
  • Malpass-Evans, R.
  • Li, Zhongkai
  • Mathwig, Klaus
  • Wang, Lina
  • Madrid, Elena
  • Kanyanee, Tinakorn
  • Dawes, Jonathan H. P.
  • Langley, Amelia R.
  • Elmer, Aisling
  • Langley, Amelia
  • Bhattacharya, Swapan K.
  • Rochat, Sébastien
  • Rong, Yuanyang
  • Dalton, Alan B.
  • Mahajan, Ankita
  • Burrows, Andrew D.
  • Burrows, Andrew
  • Rochat, Sebastien
OrganizationsLocationPeople

article

Molecularly Rigid Porous Polyamine Host Enhances Barium Titanate Catalysed H2O2 Generation

  • Marken, Frank
  • Folli, Andrea
  • Carta, Mariolino
  • Dunn, Steve
  • Pham Thi, Thuy Phuong
  • Karunakaran, Akalya
  • Mckeown, Neil B.
  • Bowen, Christopher R.
  • Fletcher, Philip J.
Abstract

<p>Barium titanate (BTO) is well-known (as a photo- or sono/piezo-catalyst) to produce hydrogen peroxide via 2-electron reduction of oxygen in the presence of a sacrificial quencher, such as isopropanol. While barium titanate nanoparticles with a tetragonal crystal structure (piezoelectric) are particularly reactive, the recovery and reuse of these nano-catalysts from reactions can be difficult. Here, barium titanate nanoparticles of typically 200 nm to 600 nm diameter are embedded into a host film of a polymer of intrinsic microporosity (PIM-EA-TB). Due to molecular rigidity of the polymer, there is no capping effect, and the surface catalytic reaction occurs effectively with a catalyst embedded in the polymer. In this exploratory work, the catalytic formation of H<sub>2</sub>O<sub>2</sub> in the presence of isopropanol is investigated via kinetic studies and by electron paramagnetic resonance (EPR). Perhaps surprisingly, at a neutral pH the rate of the catalytic reaction is substantially increased when barium titanate is embedded into the polymer host and when the polymer is protonated. This is attributed here to a “kinetic cage effect” which exploits the tertiary amine in the polymer backbone with anodic and cathodic processes coupled into a pH neutral reaction.</p>

Topics
  • nanoparticle
  • porous
  • impedance spectroscopy
  • surface
  • polymer
  • Oxygen
  • reactive
  • Hydrogen
  • electron spin resonance spectroscopy
  • amine
  • elemental analysis
  • Barium