People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fernandes, Mh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Titanium dioxide nanoparticles affect osteoblast-derived exosome cargos and impair osteogenic differentiation of human mesenchymal stem cellscitations
- 2023Full physicochemical and biocompatibility characterization of a supercritical CO2 sterilized nano-hydroxyapatite/chitosan biodegradable scaffold for periodontal bone regenerationcitations
- 2022Fabrication of a biodegradable and cytocompatible magnesium/ nanohydroxyapatite/fluorapatite composite by upward friction stir processing for biomedical applicationscitations
- 202145S5 Bioglass-Derived Glass-Ceramic Scaffolds Containing Niobium Obtained by Gelcasting Methodcitations
- 2020Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implantscitations
- 2019Influence of PLLA/PCL/HA Scaffold Fiber Orientation on Mechanical Properties and Osteoblast Behaviorcitations
- 2019Inhibitory Effect of 5-Aminoimidazole-4-Carbohydrazonamides Derivatives Against Candida spp. Biofilm on Nanohydroxyapatite Substratecitations
- 2018Processing, characterization, and in vivo evaluation of poly (L-lactic acid)-fish gelatin electrospun membranes for biomedical applicationscitations
- 2018Femtosecond laser impact on calcium phosphate bioceramics assessed by micro-Raman spectroscopy and osteoblastic behaviourcitations
- 2018Development of bioactive tellurite-lanthanide ions-reinforced hydroxyapatite composites for biomedical and luminescence applicationscitations
- 2018Highly porous 45S5 bioglass-derived glass-ceramic scaffolds by gelcasting of foamscitations
- 2018Micropatterned Silica Films with Nanohydroxyapatite for Y-TZP Implantscitations
- 2017Incorporation of glass-reinforced hydroxyapatite microparticles into poly(lactic acid) electrospun fibre mats for biomedical applicationscitations
- 2016Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regenerationcitations
- 2016Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applicationscitations
- 2015Smart electroconductive bioactive ceramics to promote in situ electrostimulation of bonecitations
- 2015Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regenerationcitations
- 2014Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applicationscitations
- 2014Processing strategies for smart electroconductive carbon nanotube-based bioceramic bone graftscitations
- 2013Development and characterization of lanthanides doped hydroxyapatite composites for bone tissue applicationcitations
- 2012Development and Characterization of Ag2O-Doped ZnLB Glasses and Biological Assessment of Ag2O-ZnLB-Hydroxyapatite Compositescitations
- 2010Evaluation of human osteoblastic cell response to plasma-sprayed silicon-substituted hydroxyapatite coatings over titanium substratescitations
- 2010New titanium and titanium/hydroxyapatite coatings on ultra-high-molecular-weight polyethylene-in vitro osteoblastic performancecitations
- 2009Assessment of the osteoblastic cell response to a zinc glass reinforced hydroxyapatite composite (Zn-GRHA)citations
- 2005In vitro studies of calcium phosphate glass ceramics with different solubility with the use of human bone marrow cellscitations
Places of action
Organizations | Location | People |
---|
document
Titanium dioxide nanoparticles affect osteoblast-derived exosome cargos and impair osteogenic differentiation of human mesenchymal stem cells
Abstract
Titanium (Ti) and its alloys are the most widely used metallic biomaterials in total joint replacement; however, increasing evidence supports the degradation of its surface due to corrosion and wear processes releasing debris (ions, and micro and nanoparticles) and contribute to particle-induced osteolysis and implant loosening. Cell-to-cell communication involving several cell types is one of the major biological processes occurring during bone healing and regeneration at the implant-bone interface. In addition to the internal response of cells to the uptake and intracellular localization of wear debris, a red flag is the ability of titanium dioxide nanoparticles (mimicking wear debris) to alter cellular communication with the tissue background, disturbing the balance between osseous tissue integrity and bone regenerative processes. This study aims to understand whether titanium dioxide nanoparticles (TiO2 NPs) alter osteoblast-derived exosome (Exo) biogenesis and whether exosomal protein cargos affect the communication of osteoblasts with human mesenchymal stem/stromal cells (HMSCs). Osteoblasts are derived from mesenchymal stem cells coexisting in the bone microenvironment during development and remodelling. We observed that TiO2 NPs stimulate immature osteoblast- and mature osteoblast-derived Exo secretion that present a distinct proteomic cargo. Functional tests confirmed that Exos derived from both osteoblasts decrease the osteogenic differentiation of HMSCs. These findings are clinically relevant since wear debris alter extracellular communication in the bone periprosthetic niche, contributing to particle-induced osteolysis and consequent prosthetic joint failure.