People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Richardson, Giles
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020Deducing transport properties of mobile vacancies from perovskite solar cell characteristicscitations
- 2020Deducing transport properties of mobile vacancies from perovskite solar cell characteristicscitations
- 2020Identification of recombination losses and charge collection efficiency in a perovskite solar cell by comparing impedance response to a drift-diffusion modelcitations
- 2019How transport layer properties affect perovskite solar cell performancecitations
- 2019How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration modelcitations
- 2017Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cellscitations
- 2017A mathematical model for mechanically-induced deterioration of the binder in lithium-ion electrodescitations
- 2016Drift diffusion modelling of charge transport in photovoltaic devicescitations
- 2015Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al O Buffer Layercitations
- 2009An asymptotic analysis of the buckling of a highly shear-resistant vesiclecitations
- 2000The mixed boundary condition for the Ginzburg Landau model in thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Identification of recombination losses and charge collection efficiency in a perovskite solar cell by comparing impedance response to a drift-diffusion model
Abstract
Interpreting the impedance response of perovskite solar cells (PSCs) is significantly more challenging than for most other photovoltaics. This is for a variety of reasons, of which the most significant are the mixed ionic-electronic conduction properties of metal halide perovskites and the difficulty in fabricating stable, and reproducible, devices. Experimental studies, conducted on a variety of PSCs, produce a variety of impedance spectra shapes. However, they all possess common features, the most noteworthy of which is that they have at least two features, at high and low frequency, with different characteristic responses to temperature, illumination and electrical bias. The impedance response has commonly been analyzed in terms of sophisticated equivalent circuits that can be hard to relate to the underlying physics and which complicates the extraction of efficiency-determining parameters. In this paper we show that, by a combination of experiment and drift-diffusion (DD) modelling of the ion and charge carrier transport and recombination within the cell, the main features of common impedance spectra are well reproduced by the DD simulation. Based on this comparison, we show that the high frequency response contains all the key information relating to the steady-state performance of a PSC, i.e. it is a signature of the recombination mechanisms and provides a measure of charge collection efficiency. Moreover, steady-state performance is significantly affected by the distribution of mobile ionic charge within the perovskite layer. Comparison between the electrical properties of different devices should therefore be made using high frequency impedance measurements performed in the steady-state voltage regime in which the cell is expected to operate.