People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wang, Hongxia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Unraveling the Mechanism of Alkali Metal Fluoride Post‐Treatment of SnO<sub>2</sub> for Efficient Planar Perovskite Solar Cellscitations
- 2024Oxygen-Mediated (0D) Cs4PbX6 Formation during Open-Air Thermal Processing Improves Inorganic Perovskite Solar Cell Performancecitations
- 2024Oxygen-Mediated (0D) Cs4PbX6 Formation during Open-Air Thermal Processing Improves Inorganic Perovskite Solar Cell Performancecitations
- 2024Polymorphous nanostructured metallic glass coatings for corrosion protection of medical grade Ti substratecitations
- 2023Nanomechanical surface properties of co-sputtered thin film polymorphic metallic glasses based on Ti-Fe-Cu, Zr-Fe-Al, and Zr-W-Cucitations
- 2022Study of Pb-based and Pb-free perovskite solar cells using Cu-doped Ni1-xO thin films as hole transport materialcitations
- 2022Simulation of perovskite solar cells using molybdenum oxide thin films as interfacial layer for enhancing device performancecitations
- 2022Surface Treatment of Inorganic CsPbI3 Nanocrystals with Guanidinium Iodide for Efficient Perovskite Light-Emitting Diodes with High Brightnesscitations
- 2021Structural, electronic and optical properties of lead-free antimony-copper based hybrid double perovskites for photovoltaics and optoelectronics by first principles calculationscitations
- 2020Strategically Constructed Bilayer Tin (IV) Oxide as Electron Transport Layer Boosts Performance and Reduces Hysteresis in Perovskite Solar Cellscitations
- 2019Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication of nanopatterned titanium pillarscitations
- 2019Ab initio atomistic insights into lead-free formamidinium based hybrid perovskites for photovoltaics and optoelectronicscitations
- 2019Low hysteresis perovskite solar cells using e-beam evaporated WO3-x thin film as electron transport layercitations
- 2019Efficiency enhancement of Cu2ZnSnS4 thin film solar cells by chromium dopingcitations
- 2019Evaluation of particle beam lithography for fabrication of metallic nano-structurescitations
- 2018[Front cover] Tuning the amount of oxygen vacancies in sputter-deposited SnOx films for enhancing the performance of perovskite solar cells (ChemSusChem 18/2018)
- 2018Insight into lead-free organic-inorganic hybrid perovskites for photovoltaics and optoelectronics: A first-principles studycitations
- 2018Optimization of Mo/Cr bilayer back contacts for thin-film solar cellscitations
- 2018Thermal effect on CZTS solar cells in different process of ZnO/ITO window layer fabricationcitations
- 2018Tuning of oxygen vacancy in sputter-deposited SnOx films for enhancing the performance of perovskite solar cellscitations
- 2017Prospects of e-beam evaporated molybdenum oxide as a hole transport layer for perovskite solar cellscitations
- 2017Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulationscitations
- 2016Investigation of the electrochemical growth of a Cu-Zn-Sn film on a molybdenum substrate using a citrate solutioncitations
Places of action
Organizations | Location | People |
---|
article
Multi-biofunctional properties of three species of cicada wings and biomimetic fabrication of nanopatterned titanium pillars
Abstract
Recently, multi-biofunctional properties of cicada wings have drawn keen interest for biomedical device applications due to their superhydrophobic, self-cleaning and bactericidal effects. We present a systematic evaluation of bactericidal and cytocompatible properties of cicada wings. We also present biomimetic nanofabrication of a patterned array of titanium nanopillars using electron beam lithography. We have characterized the nanoscale architecture of the wings of three different Australian species of cicadas (Psaltoda claripennis, Aleeta curvicosta and Palapsalta eyrei) using helium ion microscopy (HIM), scanning electron microscopy, atomic force measurement (AFM) and transmission electron microscopy (TEM). The chemical nature of the nanopatterned substrates was investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Pseudomonas aeruginosa and Staphylococcus aureus cells were attached to determine the bactericidal activity of the insect wings. Human osteoblast cells were attached to examine the biocompatibility of the insect wings. It was found that all the three cicada species have unique surface topography on their wing membranes and veins. The height, spacing, diameter, density and aspect ratio of the three species varied between the species and between the membrane and the veins. The density and aspect ratio of the nanopillars on the membranes were significantly higher than on the veins. Bacterial attachment investigation confirmed that P. aeruginosa cells and S. aureus cells were damaged by the nanopatterned array of pillars. A significant reduction in colonies of P. aeruginosa cells was found on the wings of the three species compared to the control after 18 hours. A significant reduction of S. aureus cells on the wings was observed at 2 and 4 hours but not at 18 hours compared to the control. The cell morphology of the human osteoblast cells appeared intact after 24 hours of attachment, indicating the biocompatibility of the insect wings. As a proof of concept, patterned nanopillars of titanium have been fabricated using the electron beam lithography technique directly inspired by the cicada wing architecture. The titanium nanopillars were observed to damage the bacterial cells of P. aeruginosa in a manner similar to the cicada wing species and remain compatible to osteoblast cells. The outcomes of this research can help to engineer an optimum nano-patterned surface to enhance the bioactivity and bactericidal effect on biomedical devices.