People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Choińska, Emilia
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024A comparative study of oxidation behavior of Co4Sb12 and Co4Sb10.8Se0.6Te0.6 skutterudite thermoelectric materials fabricated via fast SHS-PPS routecitations
- 20223D-Printed Drug Delivery Systems: The Effects of Drug Incorporation Methods on Their Release and Antibacterial Efficiency
- 2022The Utility of Recycled Rice Husk-Reinforced PVC Composite Profiles for Façade Claddingcitations
- 2021Biological and Corrosion Evaluation of In Situ Alloyed NiTi Fabricated through Laser Powder Bed Fusion (LPBF)citations
- 2021Plasma modification of carbon coating produced by RF CVD on oxidized NiTi shape memory alloy under glow-discharge conditionscitations
- 2020Molding Binder Influence on the Porosity and Gas Permeability of Ceramic Casting Moldscitations
- 2020The effect of diameter of fibre on formation of hydrogen bonds and mechanical properties of 3D-printed PCLcitations
- 2020The effect of introduction of filament shift on degradation behaviour of PLGA- and PLCL-based scaffolds fabricated via additive manufacturingcitations
- 2019Engineering Human-Scale Artificial Bone Grafts for Treating Critical-Size Bone Defectscitations
- 2018Nanobead-on-string composites for tendon tissue engineeringcitations
- 2018Micro and nanoscale characterization of poly(DL-lactic-co-glycolic acid) films subjected to the L929 cells and the cyclic mechanical loadcitations
- 2018Multi-scale characterization and biological evaluation of composite surface layers produced under glow discharge conditions on NiTi shape memory alloy for potential cardiological applicationcitations
- 2017Radiopaque biodegradable polymeric composites for in vivo monitoring of TE products by X-rays imaging
- 2016Increase of radiopacity of PCL scaffolds for their in vivo monitoring using x – rays imaging
- 2016Fabrication and characterization of electrospun bionanocomposites of poly (vinyl alcohol)/ nanohydroxyapatite/ cellulose nanofiberscitations
- 2013Investigations of polycaprolactone / gelatin blends in terms of their miscibilitycitations
Places of action
Organizations | Location | People |
---|
article
Nanobead-on-string composites for tendon tissue engineering
Abstract
Tissue engineering holds great potential in the production of functional substitutes to restore, maintain or improve the functionality in defective or lost tissues. So far, a great variety of techniques and approaches for fabrication of scaffolds have been developed and evaluated, allowing researchers to tailor precisely the morphological, chemical and mechanical features of the final constructs. Electrospinning of biocompatible and biodegradable polymers is a popular method for producing homogeneous nanofibrous structures, which might reproduce the nanosized organization of the tendons. Moreover, composite scaffolds obtained by incorporating nanoparticles within electrospun fibers have been lately explored in order to enhance the properties and the functionalities of the pristine polymeric constructs. The present study is focused on the design and fabrication of biocompatible electrospun nanocomposite fibrous scaffolds for tendon regeneration. A mixture of poly(amide 6) and poly(caprolactone) is electrospun to generate constructs with mechanical properties comparable to that of native tendons. To improve the biological activity of the constructs and modify their topography, wettability, stiffness and degradation rate, we incorporated silica particles into the electrospun substrates. The use of nanosize silica particles enables us to form bead-on-fiber topography, allowing the better exposure of ceramic particles to better profit their beneficial characteristics. In vitro biocompatibility studies using L929 fibroblasts demonstrated that the presence of 20 wt% of silica nanoparticles in the engineered scaffolds enhanced cell spreading and proliferation as well as extracellular matrix deposition. The results reveal that the electrospun nanocomposite scaffold represents an interesting candidate for tendon tissue engineering.