Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Boland, Jl

  • Google
  • 6
  • 20
  • 368

University of Manchester

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Showcasing the optical properties of monocrystalline zinc phosphide thin films as an earth-abundant photovoltaic absorber10citations
  • 2021The 2021 ultrafast spectroscopic probes of condensed matter roadmap96citations
  • 2018Probing the photophysics of semiconductor nanomaterials using optical pump-terahertz probe spectroscopy: From nanowires to perovskitescitations
  • 2018High Electron Mobility and Insights into Temperature-Dependent Scattering Mechanisms in InAsSb Nanowires36citations
  • 2017Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires15citations
  • 2016A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy211citations

Places of action

Chart of shared publication
Adeyemo, So
1 / 2 shared
Jagadish, C.
1 / 23 shared
Eyre, L.
1 / 7 shared
Davies, Cl
2 / 2 shared
Joyce, Hj
2 / 7 shared
Johnston, Mb
1 / 20 shared
Tan, Hh
1 / 5 shared
Deschler, F.
1 / 31 shared
Baig, Sa
1 / 1 shared
Potts, Heidi
1 / 2 shared
Johnston, Michael B.
3 / 47 shared
Amaduzzi, Francesca
1 / 3 shared
Sterzl, Sabrina
1 / 2 shared
Herz, Laura M.
2 / 35 shared
Morral, Anna Fontcuberta I.
2 / 4 shared
Davies, Christopher L.
1 / 7 shared
Tutuncuoglu, Gozde
1 / 2 shared
Gong, Juliane Q.
1 / 2 shared
Conesa-Boj, Sonia
1 / 8 shared
Baig, Sarwat A.
1 / 4 shared
Chart of publication period
2022
2021
2018
2017
2016

Co-Authors (by relevance)

  • Adeyemo, So
  • Jagadish, C.
  • Eyre, L.
  • Davies, Cl
  • Joyce, Hj
  • Johnston, Mb
  • Tan, Hh
  • Deschler, F.
  • Baig, Sa
  • Potts, Heidi
  • Johnston, Michael B.
  • Amaduzzi, Francesca
  • Sterzl, Sabrina
  • Herz, Laura M.
  • Morral, Anna Fontcuberta I.
  • Davies, Christopher L.
  • Tutuncuoglu, Gozde
  • Gong, Juliane Q.
  • Conesa-Boj, Sonia
  • Baig, Sarwat A.
OrganizationsLocationPeople

article

Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires

  • Johnston, Michael B.
  • Davies, Christopher L.
  • Tutuncuoglu, Gozde
  • Gong, Juliane Q.
  • Herz, Laura M.
  • Morral, Anna Fontcuberta I.
  • Boland, Jl
  • Conesa-Boj, Sonia
Abstract

Precise control over the electrical conductivity of semiconductor nanowires is a crucial prerequisite for implementation of these nanostructures into novel electronic and optoelectronic devices. Advances in our understanding of doping mechanisms in nanowires and their influence on electron mobility and radiative efficiency are urgently required. Here, we investigate the electronic properties of n-type modulation doped GaAs/AlGaAs nanowires via optical pump terahertz (THz) probe spectroscopy and photoluminescence spectroscopy over the temperature range 5 K–300 K. We directly determine an ionization energy of 6.7 ± 0.5 meV (T = 52 K) for the Si donors within the AlGaAs shell that create the modulation doping structure. We further elucidate the temperature dependence of the electron mobility, photoconductivity lifetime and radiative efficiency, and determine the charge-carrier scattering mechanisms that limit electron mobility. We show that below the donor ionization temperature, charge scattering is limited by interactions with interfaces, leading to an excellent electron mobility of 4360 ± 380 cm2 V−1 s−1 at 5 K. Above the ionization temperature, polar scattering via longitudinal optical (LO) phonons dominates, leading to a room temperature mobility of 2220 ± 130 cm2 V−1 s−1. In addition, we show that the Si donors effectively passivate interfacial trap states in the nanowires, leading to prolonged photoconductivity lifetimes with increasing temperature, accompanied by an enhanced radiative efficiency that exceeds 10% at room temperature.

Topics
  • impedance spectroscopy
  • photoluminescence
  • mobility
  • semiconductor
  • interfacial
  • electrical conductivity
  • photoconductivity