Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dawson, Daniel M.

  • Google
  • 15
  • 49
  • 163

University of St Andrews

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2024Site-directed cation ordering in chabazite-type Al x Ga 1–x PO 4 -34 frameworks revealed by NMR crystallography1citations
  • 2024Site-directed cation ordering in chabazite-type AlxGa1–xPO4-34 frameworks revealed by NMR crystallography1citations
  • 2024Site-directed cation ordering in chabazite-type Al x Ga 1− x PO 4 -34 frameworks revealed by NMR crystallography1citations
  • 2024Site-directed cation ordering in chabazite-type AlxGa1−xPO4-34 frameworks revealed by NMR crystallography1citations
  • 2023Synthesis of FeAPO-34 molecular sieve under ionothermal condition2citations
  • 2022Synthesis of FeAPO-34 molecular sieve under ionothermal condition2citations
  • 201817 O solid-state NMR spectroscopy of A 2 B 2 O 7 oxides:quantitative isotopic enrichment and spectral acquisition?15citations
  • 201817O solid-state NMR spectroscopy of A2B2O7 oxides15citations
  • 2017A gel aging effect in the synthesis of open-framework gallium phosphates7citations
  • 2017Assembly-diassembly-organization-reassembly synthesis of zeolites based on cfi-type layers62citations
  • 2016Phase Composition and Disorder in La2(Sn,Ti)2O7 Ceramics: New Insights from NMR Crystallographycitations
  • 2016Phase composition and disorder in La2(Sn,Ti)2O7 ceramics16citations
  • 2015Combined theoretical and experimental investigations of porous crystalline materialscitations
  • 2011A co-templating route to the synthesis of Cu SAPO STA-7, giving an active catalyst for the selective catalytic reduction of NOcitations
  • 2011A co-templating route to the synthesis of Cu SAPO STA-7, giving an active catalyst for the selective catalytic reduction of NO40citations

Places of action

Chart of shared publication
Guillou, Nathalie
5 / 17 shared
Marshall, Thomas
2 / 2 shared
Ashbrook, Sharon E.
7 / 9 shared
Walton, Richard
3 / 5 shared
Clayton, Jasmine
2 / 2 shared
Ashbrook, Sharon. E.
6 / 15 shared
Marshall, Thomas H. D.
2 / 2 shared
Walton, Richard I.
2 / 34 shared
Clayton, Jasmine A.
2 / 4 shared
Musa, Mazlina
2 / 2 shared
Morris, Russell E.
3 / 30 shared
Whittle, Karl
3 / 10 shared
Mckay, David
4 / 8 shared
Moran, Robert
2 / 5 shared
Bignami, Giulia P. M.
2 / 2 shared
Blanc, Frédéric
2 / 9 shared
Fernandes, Arantxa
4 / 7 shared
Sneddon, Scott
4 / 11 shared
Tang, Chiu C.
1 / 17 shared
Broom, Lucy
1 / 1 shared
Clarkson, Guy
1 / 1 shared
Hooper, Joseph E.
1 / 1 shared
Opanasenko, Maksym
1 / 4 shared
Morris, Samuel A.
1 / 5 shared
Firth, Daniel S.
1 / 1 shared
Čejka, Jiři
1 / 2 shared
Slawin, Alexandra Martha Zoya
2 / 65 shared
Wheatley, Paul S.
1 / 8 shared
Položij, Miroslav
1 / 3 shared
Mayoral, Alvaro
1 / 9 shared
Nachtigall, Petr
1 / 2 shared
Russell, Samantha E.
1 / 4 shared
Lawson, Sebastian
2 / 4 shared
Whittle, Karl R.
1 / 2 shared
Veazey, Richard
2 / 5 shared
Warrender, Stewart J.
2 / 5 shared
Thompson, Stephen P.
2 / 7 shared
Slawin, Alexandra M.
1 / 1 shared
Hong, Suk Bong
2 / 4 shared
Daturi, Marco
2 / 8 shared
Picone, A. Lorena
2 / 2 shared
Wright, Paul A.
2 / 14 shared
Vimont, Alexandre
2 / 6 shared
Gaberova, Lucia
2 / 2 shared
Moulin, Beatrice
2 / 2 shared
Sung, Sam Kyung
2 / 2 shared
Park, Min Bum
2 / 2 shared
Nam, In-Sik
2 / 3 shared
Llewellyn, Philip L.
1 / 8 shared
Chart of publication period
2024
2023
2022
2018
2017
2016
2015
2011

Co-Authors (by relevance)

  • Guillou, Nathalie
  • Marshall, Thomas
  • Ashbrook, Sharon E.
  • Walton, Richard
  • Clayton, Jasmine
  • Ashbrook, Sharon. E.
  • Marshall, Thomas H. D.
  • Walton, Richard I.
  • Clayton, Jasmine A.
  • Musa, Mazlina
  • Morris, Russell E.
  • Whittle, Karl
  • Mckay, David
  • Moran, Robert
  • Bignami, Giulia P. M.
  • Blanc, Frédéric
  • Fernandes, Arantxa
  • Sneddon, Scott
  • Tang, Chiu C.
  • Broom, Lucy
  • Clarkson, Guy
  • Hooper, Joseph E.
  • Opanasenko, Maksym
  • Morris, Samuel A.
  • Firth, Daniel S.
  • Čejka, Jiři
  • Slawin, Alexandra Martha Zoya
  • Wheatley, Paul S.
  • Položij, Miroslav
  • Mayoral, Alvaro
  • Nachtigall, Petr
  • Russell, Samantha E.
  • Lawson, Sebastian
  • Whittle, Karl R.
  • Veazey, Richard
  • Warrender, Stewart J.
  • Thompson, Stephen P.
  • Slawin, Alexandra M.
  • Hong, Suk Bong
  • Daturi, Marco
  • Picone, A. Lorena
  • Wright, Paul A.
  • Vimont, Alexandre
  • Gaberova, Lucia
  • Moulin, Beatrice
  • Sung, Sam Kyung
  • Park, Min Bum
  • Nam, In-Sik
  • Llewellyn, Philip L.
OrganizationsLocationPeople

article

A gel aging effect in the synthesis of open-framework gallium phosphates

  • Guillou, Nathalie
  • Walton, Richard
  • Tang, Chiu C.
  • Broom, Lucy
  • Dawson, Daniel M.
  • Clarkson, Guy
  • Ashbrook, Sharon. E.
  • Hooper, Joseph E.
Abstract

The templated zeolite-analogue GaPO-34 (CHA structure type) crystallises from a gel precursor Ga<sub>2</sub>O<sub>3</sub> : 2H<sub>3</sub>PO<sub>4</sub> : 1HF : 1.7SDA : 70H2O (where SDA = structure directing agent), treated hydrothermally for 24 hours at 170 °C using either pyridine or 1-methylimizadole as SDA and one of either poorly crystalline ε-Ga<sub>2</sub>O<sub>3</sub> or γ-Ga<sub>2</sub>O<sub>3</sub> as gallium precursor. If the same gels are stirred for periods shorter than 2 hours but treated under identical hydrothermal conditions, then a second phase crystallises, free of GaPO-34. If β-Ga<sub>2</sub>O<sub>3</sub> is used as a reagent only the second phase is found to crystallise, irrespective of gel aging time. The competing phase, which we denote GaPO-34A, has been structurally characterised using synchrotron powder X-ray diffraction for the pyridine material, GaPO-34A(pyr), and using single-crystal X-ray diffraction for the 1-methylimiazole material, GaPO-34A(mim). The structure of GaPO-34A(pyr), P[1 with combining macron], a = 10.22682(6) Å, b = 12.09585(7) Å, c = 13.86713(8) Å, α = 104.6531(4)°, β = 100.8111(6)°, γ = 102.5228(6)°, contains 7 unique gallium sites and 6 phosphorus sites, with empirical formula [Ga<sub>7</sub>P<sub>6</sub>O<sub>24</sub>(OH)<sub>2</sub>F<sub>3</sub>(H<sub>2</sub>O)<sub>2</sub>]·2(C<sub>5</sub>NH<sub>6</sub>). GaPO-34A(mim) is isostructural but is modelled as a half volume unit cell, P[1 with combining macron], a = 5.0991(2) Å, b = 12.0631(6) Å, c = 13.8405(9) Å, α = 104.626(5)°, β = 100.346(5)°, γ = 101.936(4)°, with a gallium and a bridging fluoride partially occupied and two partially occupied SDA sites. Solid-state <sup>31</sup>P and <sup>71</sup>Ga NMR spectroscopy confirms the structural complexity of GaPO-34A with signals resulting from overlapping lineshapes from multiple Ga and P sites, while <sup>1</sup>H and <sup>13</sup>C solid-state NMR spectra confirm the presence of the protonated SDA and provide evidence for disorder in the SDA. The protonated SDA is located in 14-ring one-dimensional channels with hydrogen bonding deduced from the SDA nitrogens to framework oxygen distances. Upon thermal treatment to investigate SDA removal, structure collapse occurs, which may be due the large number of bridging hydroxides and fluorides in the as-made material, and the unequal amounts of gallium and phosphorus present.

Topics
  • impedance spectroscopy
  • phase
  • Oxygen
  • Nitrogen
  • powder X-ray diffraction
  • Hydrogen
  • aging
  • Nuclear Magnetic Resonance spectroscopy
  • one-dimensional
  • aging
  • Phosphorus
  • Gallium
  • open-framework