Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ünal, Derya

  • Google
  • 1
  • 8
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Improving the zT value of thermoelectrics by nanostructuring46citations

Places of action

Chart of shared publication
Heimann, Stefan
1 / 4 shared
Loor, Manuel
1 / 1 shared
Schierning, Gabi
1 / 13 shared
Schulz, Stephan
1 / 29 shared
Mudring, Anja-Verena
1 / 78 shared
Hagemann, Ulrich
1 / 6 shared
Schaumann, Julian
1 / 3 shared
Maculewicz, Franziska
1 / 4 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Heimann, Stefan
  • Loor, Manuel
  • Schierning, Gabi
  • Schulz, Stephan
  • Mudring, Anja-Verena
  • Hagemann, Ulrich
  • Schaumann, Julian
  • Maculewicz, Franziska
OrganizationsLocationPeople

article

Improving the zT value of thermoelectrics by nanostructuring

  • Heimann, Stefan
  • Loor, Manuel
  • Schierning, Gabi
  • Schulz, Stephan
  • Ünal, Derya
  • Mudring, Anja-Verena
  • Hagemann, Ulrich
  • Schaumann, Julian
  • Maculewicz, Franziska
Abstract

<p>A systematic study on the microwave-assisted thermolysis of the single source precursor (Et<sub>2</sub>Sb)<sub>2</sub>Te (1) in different asymmetric 1-alkyl-3-methylimidazolium- and symmetric 1,3-dialkylimidazolium-based ionic liquids (ILs) reveals the distinctive role of both the anion and the cation in tuning the morphology and microstructure of the resulting Sb<sub>2</sub>Te<sub>3</sub> nanoparticles as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray photoelectron spectroscopy (XPS). A comparison of the electrical and thermal conductivities as well as the Seebeck coefficient of the Sb<sub>2</sub>Te<sub>3</sub> nanoparticles obtained from different ILs reveals the strong influence of the specific IL, from which C<sub>4</sub>mimI was identified as the best solvent, on the thermoelectric properties of as-prepared nanosized Sb<sub>2</sub>Te<sub>3</sub>. This work provides design guidelines for ILs, which allow the synthesis of nanostructured thermoelectrics with improved performances.</p>

Topics
  • nanoparticle
  • microstructure
  • scanning electron microscopy
  • x-ray diffraction
  • x-ray photoelectron spectroscopy
  • Energy-dispersive X-ray spectroscopy
  • thermolysis