People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Figueiras, Fg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2017Novel multiferroic state and ME enhancement by breaking the AFM frustration in LuMn1-xO3citations
- 2017Deposition parameters and annealing key role in setting structural and polar properties of Bi0.9La0.1Fe0.9Mn0.1O3 thin filmscitations
- 2016Breaking the geometric magnetic frustration in controlled off-stoichiometric LuMn1+zO3+delta compoundscitations
Places of action
Organizations | Location | People |
---|
article
Breaking the geometric magnetic frustration in controlled off-stoichiometric LuMn1+zO3+delta compounds
Abstract
This study explores controlled off-stoichiometric LuMn1+zO3+delta (vertical bar z vertical bar < 0.1) compounds, intended to retain the utter LuMnO3 intrinsic hexagonal symmetry and ferroelectric properties. X-ray powder diffraction measurements evidenced a single phase P6(3)cm structure. Thermo-gravimetric experiments show a narrow impact of oxygen vacancies while a distinguishable gas exchange at similar to 700 K, a surprisingly lower temperature when compared to perovskite systems. A comparison of different nominal ceramics revealed pertinent structural and magnetic property variations owing to subtle self-doping effects. Deviations from the archetypal antiferromagnetic state were detected below similar to 90 K suggesting local rearrangements of the nominal Mn3+ ions matrix, breaking the ideal geometrical spin frustration, leading to a non-compensated magnetic structure.