People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kaunisto, K.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2015Pt-functionalized Fe2O3 photoanodes for solar water splitting : the role of hematite nano-organization and the platinum redox statecitations
- 2015Pt-functionalized Fe2O3 photoanodes for solar water splitting: the role of hematite nano-organization and the platinum redox statecitations
- 2015Pt-functionalized Fe2O3 photoanodes for solar water splittingcitations
Places of action
Organizations | Location | People |
---|
article
Pt-functionalized Fe2O3 photoanodes for solar water splitting
Abstract
<p>Pt/alpha-Fe2O3 nanocomposites were synthesized on fluorine-doped tin oxide (FTO) substrates by a sequential plasma enhanced-chemical vapor deposition (PE-CVD)/radio frequency (RF) sputtering approach, tailoring the overall Pt content as a function of sputtering time. The chemico-physical properties of the as-prepared systems were extensively investigated by means of complementary techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), secondary ion mass spectrometry (SIMS), and optical absorption spectroscopy, and compared to those of the homologous Pt/alpha-Fe2O3 systems annealed in air prior and/or after sputtering. The obtained results evidenced that the material compositional, structural and morphological features, with particular regard to the Pt oxidation state and hematite nano-organization, could be finely tailored as a function of the adopted processing conditions. Pt/alpha-Fe2O3 systems were finally tested as photoanodes in photoelectrochemical (PEC) water splitting experiments, evidencing a remarkable interplay between functional performances and the above-mentioned material properties, as also testified by transient absorption spectroscopy (TAS) results.</p>