Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ceniceros, Mónica A.

  • Google
  • 1
  • 10
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Tailoring mechanical properties and electrical conductivity of flexible niobium carbide nanocomposite thin films47citations

Places of action

Chart of shared publication
Emerson Coy, Phd, Dsc.
1 / 38 shared
Załęski, Karol
1 / 41 shared
Möller, Marco
1 / 3 shared
Yate, Luis
1 / 17 shared
Beltrán, Mikel
1 / 2 shared
Llarena, Irantzu
1 / 2 shared
Saucedo, Esmeralda M.
1 / 1 shared
Díaz-Barriga, Enrique
1 / 1 shared
Ziolo, Ronald F.
1 / 2 shared
Wang, Guocheng
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Emerson Coy, Phd, Dsc.
  • Załęski, Karol
  • Möller, Marco
  • Yate, Luis
  • Beltrán, Mikel
  • Llarena, Irantzu
  • Saucedo, Esmeralda M.
  • Díaz-Barriga, Enrique
  • Ziolo, Ronald F.
  • Wang, Guocheng
OrganizationsLocationPeople

article

Tailoring mechanical properties and electrical conductivity of flexible niobium carbide nanocomposite thin films

  • Emerson Coy, Phd, Dsc.
  • Załęski, Karol
  • Möller, Marco
  • Yate, Luis
  • Beltrán, Mikel
  • Ceniceros, Mónica A.
  • Llarena, Irantzu
  • Saucedo, Esmeralda M.
  • Díaz-Barriga, Enrique
  • Ziolo, Ronald F.
  • Wang, Guocheng
Abstract

<p>Flexible NbC nanocomposite thin films with carbon content ranging from 0 to 99 at.% were deposited at room temperature on Si (100) and polystyrene substrates by non-reactive magnetron sputtering from pure Nb and C targets without applying bias voltage to the substrates. HRTEM images reveal that the films exhibit a nanocomposite structure consisting of NbC nanocrystals (2 to 15 nm in size) embedded in an amorphous carbon matrix. By simply adjusting the Nb flux in the plasma, we can monitor the nanocrystal size and the percent of free-carbon phase in the films, which in turn allows for the tailoring of both mechanical properties and electrical conductivity of the films. It was found that the films composed of ∼8-10% free-carbon exhibited a relatively high hardness and elastic recovery, around 23 GPa and 85%, respectively, and an electrical conductivity of 2.2 × 10<sup>6</sup> S m<sup>-1</sup> at 22 °C. This study indicates the potential of this non-reactive sputtering approach in depositing hard, elastic and electrically conductive nanocomposite films at low temperatures, which is especially useful for preparation of films on temperature sensitive polymers or plastic substrates for nano- and micro- electronics applications.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • amorphous
  • Carbon
  • phase
  • thin film
  • reactive
  • carbide
  • hardness
  • electrical conductivity
  • niobium
  • carbon content