Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahn, Byungcheol

  • Google
  • 1
  • 7
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Physical mixtures of small-molecule and polymeric organic semiconductors11citations

Places of action

Chart of shared publication
Ree, Moonhor
1 / 3 shared
Rho, Yecheol
1 / 2 shared
Bucknall, David G.
1 / 6 shared
Polander, Lauren E.
1 / 1 shared
Jung, Sungmin
1 / 1 shared
Marder, Seth R.
1 / 20 shared
Wunsch, Benjamin H.
1 / 1 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Ree, Moonhor
  • Rho, Yecheol
  • Bucknall, David G.
  • Polander, Lauren E.
  • Jung, Sungmin
  • Marder, Seth R.
  • Wunsch, Benjamin H.
OrganizationsLocationPeople

article

Physical mixtures of small-molecule and polymeric organic semiconductors

  • Ree, Moonhor
  • Rho, Yecheol
  • Bucknall, David G.
  • Polander, Lauren E.
  • Jung, Sungmin
  • Ahn, Byungcheol
  • Marder, Seth R.
  • Wunsch, Benjamin H.
Abstract

<p>Physical mixtures of organic semiconductors are increasingly used for the development of new materials in thin film, organic electronic applications and their electronic properties are strongly affected by their morphology. Here, we report on studies of blends of an electron-donating small molecule, BTD-DTP, with the electron-acceptor polymer PNDI-2T and the correlations between their thermal behaviour, intermixing and thin film structure. A significant depression of the PNDI-2T melting point (ΔT = 111 °C) is observed upon increasing the small molecule content. Grazing incidence X-ray scattering (GIXS) and scanning probe microscopy (SPM) of thin films of varying composition show an increase in the small molecule crystalline phase and reduction in the crystallite orientation distribution, as the small molecule to polymer ratio reaches ∼50 : 50 wt. The domain sizes of the small molecule and polymer crystalline phases reach a minimum at the 50 : 50 wt ratio as well, suggesting the formation of the phases leads to mutual limitation of their crystalline domain size. Comparison of the bulk and thin film properties shows a divergence in behaviour of the small molecule, which in the bulk exhibits only a monotonic decrease in melting point with addition of polymer, but which has an increase in crystallinity, from 20 to 50 wt% PNDI-2T content.</p>

Topics
  • impedance spectroscopy
  • polymer
  • thin film
  • crystalline phase
  • semiconductor
  • crystallinity
  • X-ray scattering
  • scanning probe microscopy