Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cordeiro, Ana L.

  • Google
  • 4
  • 10
  • 146

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2011Immobilization of Bacillus licheniformis α-amylase onto reactive polymer films36citations
  • 2011Enzyme immobilization on reactive polymer films13citations
  • 2011Enzymes for antifouling strategies54citations
  • 2009Temperature dependent physicochemical properties of poly(N- isopropylacrylamide-co-N-(1-phenylethyl) acrylamide) thin films43citations

Places of action

Chart of shared publication
Werner, Carsten
4 / 45 shared
Lenk, Tina
1 / 1 shared
Salchert, Katrin
1 / 1 shared
Pompe, Tilo
1 / 4 shared
Schäfer, Nicole
1 / 1 shared
Grundke, Karina
1 / 4 shared
Gramm, Stefan
1 / 5 shared
Nitschke, Mirko
1 / 8 shared
Janke, Andreas
1 / 10 shared
Zimmermann, Ralf
1 / 11 shared
Chart of publication period
2011
2009

Co-Authors (by relevance)

  • Werner, Carsten
  • Lenk, Tina
  • Salchert, Katrin
  • Pompe, Tilo
  • Schäfer, Nicole
  • Grundke, Karina
  • Gramm, Stefan
  • Nitschke, Mirko
  • Janke, Andreas
  • Zimmermann, Ralf
OrganizationsLocationPeople

article

Temperature dependent physicochemical properties of poly(N- isopropylacrylamide-co-N-(1-phenylethyl) acrylamide) thin films

  • Schäfer, Nicole
  • Grundke, Karina
  • Gramm, Stefan
  • Werner, Carsten
  • Nitschke, Mirko
  • Cordeiro, Ana L.
  • Janke, Andreas
  • Zimmermann, Ralf
Abstract

<p>The physicochemical properties of thermo-responsive polymer films are dynamically altered upon changes in environmental conditions. We report on the design and detailed characterization of a novel thermo-responsive polymer film with a temperature transition tuned to fit applications related to the control of marine biofouling. A copolymer consisting of poly(N-isopropylacrylamide) (PNIPAAm) and N-(1-phenylethyl) acrylamide (PEAAm) was synthesized and immobilized as a thin film onto Teflon AF surfaces using a low pressure argon plasma treatment. The temperature dependent physicochemical properties of the thermo-responsive film were thoroughly characterized and the impact of sea water on the film properties was investigated. The immobilized thermo-responsive film exhibits a reversible swelling/deswelling with temperature. Atomic force microscopy showed no morphological changes with varying temperature. Streaming current measurements performed above and below the transition temperature of the thermo-responsive hydrogel indicated that the charging of the polymer/aqueous solution interface is mainly determined by the preferential water ion adsorption at the Teflon AF surface. Inverse contact angles measured using captive air bubbles and analysed by axisymmetric drop shape analysis (ADSA) supported the intrinsic properties of the thermo-responsive film, as surface hydrophilicity decreased with increasing temperature. The advancing water contact angle decreased with increasing temperature, which may be explained by the different molecular mobility at different temperatures, allowing or hampering the re-orientation of hydrophobic segments at the solid-liquid and solid-fluid interfaces. These new films will allow investigations on the interaction of microorganisms with environmentally sensitive surfaces.</p>

Topics
  • impedance spectroscopy
  • surface
  • mobility
  • thin film
  • atomic force microscopy
  • copolymer