Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yang, Hyejung

  • Google
  • 3
  • 28
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Mimicking on-water surface synthesis through micellar interfaces3citations
  • 2023On-water surface synthesis of electronically coupled 2D polyimide-MoS2 van der Waals heterostructure9citations
  • 2023Piezo‐Phototronic In2Se3 Nanosheets as a Material Platform for Printable Electronics toward Multifunctional Sensing Applications2citations

Places of action

Chart of shared publication
Cuniberti, Gianaurelio
1 / 456 shared
Nguyen, Nguyen Ngan
2 / 3 shared
Prasoon, Anupam
2 / 3 shared
Paasch, Silvia
1 / 4 shared
Herbawe, Abdallh
1 / 1 shared
Müller, Alina
2 / 3 shared
Aiti, Muhannad Al
1 / 4 shared
Naisa, Chandrasekhar
1 / 1 shared
Brunner, Eike
1 / 12 shared
Feng, Xinliang
3 / 58 shared
Ghouse, Shaik
1 / 1 shared
Lan, Tianshu
1 / 3 shared
Nia, Ali Shaygan
2 / 7 shared
Hambsch, Mike
1 / 17 shared
Wang, Zhiyong
1 / 2 shared
Fontaine, Philippe
1 / 8 shared
Dong, Renhao
1 / 12 shared
Kühne, Thomas D.
1 / 4 shared
Cho, Kilwon
1 / 4 shared
Chung, Sein
1 / 1 shared
Mannsfeld, Stefan C. B.
1 / 18 shared
Veisakis, George
1 / 1 shared
Kymakis, Emmanuel
1 / 14 shared
Polyzoidis, Christos
1 / 3 shared
Rogdakis, Konstantinos
1 / 4 shared
Sofer, Zdeněk
1 / 20 shared
Tsikritzis, Dimitris
1 / 4 shared
Hashemi, Payam
1 / 2 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Cuniberti, Gianaurelio
  • Nguyen, Nguyen Ngan
  • Prasoon, Anupam
  • Paasch, Silvia
  • Herbawe, Abdallh
  • Müller, Alina
  • Aiti, Muhannad Al
  • Naisa, Chandrasekhar
  • Brunner, Eike
  • Feng, Xinliang
  • Ghouse, Shaik
  • Lan, Tianshu
  • Nia, Ali Shaygan
  • Hambsch, Mike
  • Wang, Zhiyong
  • Fontaine, Philippe
  • Dong, Renhao
  • Kühne, Thomas D.
  • Cho, Kilwon
  • Chung, Sein
  • Mannsfeld, Stefan C. B.
  • Veisakis, George
  • Kymakis, Emmanuel
  • Polyzoidis, Christos
  • Rogdakis, Konstantinos
  • Sofer, Zdeněk
  • Tsikritzis, Dimitris
  • Hashemi, Payam
OrganizationsLocationPeople

article

On-water surface synthesis of electronically coupled 2D polyimide-MoS2 van der Waals heterostructure

  • Lan, Tianshu
  • Nia, Ali Shaygan
  • Hambsch, Mike
  • Prasoon, Anupam
  • Wang, Zhiyong
  • Fontaine, Philippe
  • Feng, Xinliang
  • Dong, Renhao
  • Nguyen, Nguyen Ngan
  • Kühne, Thomas D.
  • Cho, Kilwon
  • Müller, Alina
  • Chung, Sein
  • Mannsfeld, Stefan C. B.
  • Yang, Hyejung
Abstract

<jats:title>Abstract</jats:title><jats:p>The water surface provides a highly effective platform for the synthesis of two-dimensional polymers (2DP). In this study, we present an efficient on-water surface synthesis of crystalline monolayer 2D polyimide (2DPI) through the imidization reaction between tetra (4-aminophenyl) porphyrin (M1) and perylenetracarboxylic dianhydride (M2), resulting in excellent stability and coverage over a large area (tens of cm<jats:sup>2</jats:sup>). We further fabricate innovative organic-inorganic hybrid van der Waals heterostructures (vdWHs) by combining with exfoliated few-layer molybdenum sulfide (MoS<jats:sub>2</jats:sub>). High-resolution transmission electron microscopy (HRTEM) reveals face-to-face stacking between MoS<jats:sub>2</jats:sub> and 2DPI within the vdWH. This stacking configuration facilitates remarkable charge transfer and noticeable n-type doping effects from monolayer 2DPI to MoS<jats:sub>2</jats:sub>, as corroborated by Raman spectroscopy, photoluminescence measurements, and field-effect transistor (FET) characterizations. Notably, the 2DPI-MoS<jats:sub>2</jats:sub> vdWH exhibits an impressive electron mobility of 50 cm<jats:sup>2</jats:sup>/V·s, signifying a substantial improvement over pristine MoS<jats:sub>2</jats:sub> (8 cm<jats:sup>2</jats:sup>/V·s). This study unveils the immense potential of integrating 2D polymers to enhance semiconductor device functionality through tailored vdWHs, thereby opening up exciting new avenues for exploring unique interfacial physical phenomena.</jats:p>

Topics
  • surface
  • photoluminescence
  • molybdenum
  • polymer
  • mobility
  • semiconductor
  • transmission electron microscopy
  • two-dimensional
  • Raman spectroscopy
  • field-effect transistor method