Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vass, Csaba

  • Google
  • 1
  • 12
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Enhancing the dipole ring of hexagonal boron nitride nanomesh by surface alloying2citations

Places of action

Chart of shared publication
Kiss, János
1 / 2 shared
Palotas, Krisztian
1 / 3 shared
Ovari, Laszlo
1 / 1 shared
Halasi, Gyula
1 / 1 shared
Stadtmüller, Benjamin
1 / 22 shared
Aeschlimann, Martin
1 / 19 shared
Dombi, Peter
1 / 1 shared
Kónya, Zoltán
1 / 11 shared
Berkó, András
1 / 1 shared
Yu, Ka Man
1 / 2 shared
Farkas, Arnold P.
1 / 1 shared
Vári, Gábor
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Kiss, János
  • Palotas, Krisztian
  • Ovari, Laszlo
  • Halasi, Gyula
  • Stadtmüller, Benjamin
  • Aeschlimann, Martin
  • Dombi, Peter
  • Kónya, Zoltán
  • Berkó, András
  • Yu, Ka Man
  • Farkas, Arnold P.
  • Vári, Gábor
OrganizationsLocationPeople

article

Enhancing the dipole ring of hexagonal boron nitride nanomesh by surface alloying

  • Kiss, János
  • Palotas, Krisztian
  • Ovari, Laszlo
  • Vass, Csaba
  • Halasi, Gyula
  • Stadtmüller, Benjamin
  • Aeschlimann, Martin
  • Dombi, Peter
  • Kónya, Zoltán
  • Berkó, András
  • Yu, Ka Man
  • Farkas, Arnold P.
  • Vári, Gábor
Abstract

<jats:title>Abstract</jats:title><jats:p>Surface templating by electrostatic surface potentials is the least invasive way to design large-scale artificial nanostructures. However, generating sufficiently large potential gradients remains challenging. Here, we lay the groundwork for significantly enhancing local electrostatic fields by chemical modification of the surface. We consider the hexagonal boron nitride (h-BN) nanomesh on Rh(111), which already exhibits small surface potential gradients between its pore and wire regions. Using photoemission spectroscopy, we show that adding Au atoms to the Rh(111) surface layer leads to a local migration of Au atoms below the wire regions of the nanomesh. This significantly increases the local work function difference between the pore and wire regions that can be quantified experimentally by the changes in the h-BN valence band structure. Using density functional theory, we identify an electron transfer from Rh to Au as the microscopic origin for the local enhancement of potential gradients within the h-BN nanomesh.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • surface
  • theory
  • nitride
  • density functional theory
  • Boron
  • wire
  • band structure