Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bijkerk, Frederik

  • Google
  • 10
  • 24
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2017In-vacuo growth studies and thermal oxidation of ZrO2 thin filmscitations
  • 2017Tuning of large piezoelectric response in nanosheet-buffered lead zirconate titanate films on glass substrates14citations
  • 2017Detection of defect populations in superconductor boron subphosphide B12P2 through X-ray absorption spectroscopy7citations
  • 2016In-vacuo growth studies of ZrO2 thin filmscitations
  • 2016Structure of high-reflectance La/B-based multilayer mirrors with partial La nitridation12citations
  • 2016Growth kinetics of Ru on Si, SiN and SiO2 studied by in-vacuo low energy ion scattering (LEIS)citations
  • 2016Exploiting the P L2,3 absorption edge for optics: spectroscopic and structural characterization of cubic boron phosphide thin films12citations
  • 2013Engineering optical constants for broadband single layer anti-reflection coatingscitations
  • 2012Chemical interactions at the interfaces of Mo/B4C/Si/B4C multilayers upon low-temperature annealingcitations
  • 2012Multilayer development for the generation beyond EUV: 6.x nmcitations

Places of action

Chart of shared publication
Sturm, Jacobus
5 / 8 shared
Ribera, Roger Coloma
3 / 5 shared
Yakshin, Andrey
6 / 7 shared
Van De Kruijs, Robbert
9 / 22 shared
Ten Elshof, Johan E.
1 / 11 shared
Bayraktar, Muharrem
1 / 3 shared
Rijnders, Guus
1 / 20 shared
Nijland, Maarten
1 / 3 shared
Chopra, A.
1 / 1 shared
Gullikson, E.
2 / 3 shared
Edgar, J. H.
2 / 5 shared
Frye, C. D.
1 / 1 shared
Prendergast, D.
2 / 3 shared
Meyer-Ilse, J.
2 / 2 shared
Huber, Sebastiaan
3 / 3 shared
Kuznetsov, Dmitry
1 / 1 shared
Medvedev, Viacheslav
1 / 2 shared
Padavala, B.
1 / 1 shared
Zoethout, E.
2 / 6 shared
Nyabero, S. L.
1 / 1 shared
Louis, Eric
1 / 4 shared
Makhotkin, Igor Alexandrovich
1 / 1 shared
Muellender, S.
1 / 1 shared
Yakunin, A. M.
1 / 1 shared
Chart of publication period
2017
2016
2013
2012

Co-Authors (by relevance)

  • Sturm, Jacobus
  • Ribera, Roger Coloma
  • Yakshin, Andrey
  • Van De Kruijs, Robbert
  • Ten Elshof, Johan E.
  • Bayraktar, Muharrem
  • Rijnders, Guus
  • Nijland, Maarten
  • Chopra, A.
  • Gullikson, E.
  • Edgar, J. H.
  • Frye, C. D.
  • Prendergast, D.
  • Meyer-Ilse, J.
  • Huber, Sebastiaan
  • Kuznetsov, Dmitry
  • Medvedev, Viacheslav
  • Padavala, B.
  • Zoethout, E.
  • Nyabero, S. L.
  • Louis, Eric
  • Makhotkin, Igor Alexandrovich
  • Muellender, S.
  • Yakunin, A. M.
OrganizationsLocationPeople

article

Tuning of large piezoelectric response in nanosheet-buffered lead zirconate titanate films on glass substrates

  • Ten Elshof, Johan E.
  • Bayraktar, Muharrem
  • Rijnders, Guus
  • Bijkerk, Frederik
  • Nijland, Maarten
  • Chopra, A.
Abstract

Renewed interest has been witnessed in utilizing the piezoelectric response of PbZr0.52Ti0.48O3 (PZT) films on glass substrates for applications such as adaptive optics. Accordingly, new methodologies are being explored to grow well-oriented PZT thin films to harvest a large piezoelectric response. However, thin film piezoelectric response is significantly reduced compared to intrinsic response due to substrate induced clamping, even when films are well-oriented. Here, a novel method is presented to grow preferentially (100)-oriented PZT films on glass substrates by utilizing crystalline nanosheets as seed layers. Furthermore, increasing the repetition frequency up to 20 Hz during pulsed laser deposition helps to tune the film microstructure to hierarchically ordered columns that leads to reduced clamping and enhanced piezoelectric response evidenced by transmission electron microscopy and analytical calculations. A large piezoelectric coefficient of 250 pm/V is observed in optimally tuned structure which is more than two times the highest reported piezoelectric response on glass. To confirm that the clamping compromises the piezoelectric response, denser films are deposited using a lower repetition frequency and a BiFeO3 buffer layer resulting in significantly reduced piezoelectric responses. This paper demonstrates a novel method for PZT integration on glass substrates without compromising the large piezoelectric response.

Topics
  • impedance spectroscopy
  • microstructure
  • thin film
  • glass
  • glass
  • transmission electron microscopy
  • pulsed laser deposition