Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yang, Hongbin

  • Google
  • 1
  • 9
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Pines’ demon observed as a 3D acoustic plasmon in Sr2RuO424citations

Places of action

Chart of shared publication
Uchoa, Bruno
1 / 1 shared
Maeno, Yoshiteru
1 / 6 shared
Guo, Xuefei
1 / 1 shared
Rak, Melinda S.
1 / 1 shared
Batson, Philip
1 / 3 shared
Rubeck, Samantha I.
1 / 4 shared
Sow, Chanchal
1 / 5 shared
Chiang, Tai-Chang
1 / 2 shared
Phillips, Philip
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Uchoa, Bruno
  • Maeno, Yoshiteru
  • Guo, Xuefei
  • Rak, Melinda S.
  • Batson, Philip
  • Rubeck, Samantha I.
  • Sow, Chanchal
  • Chiang, Tai-Chang
  • Phillips, Philip
OrganizationsLocationPeople

article

Pines’ demon observed as a 3D acoustic plasmon in Sr2RuO4

  • Uchoa, Bruno
  • Maeno, Yoshiteru
  • Yang, Hongbin
  • Guo, Xuefei
  • Rak, Melinda S.
  • Batson, Philip
  • Rubeck, Samantha I.
  • Sow, Chanchal
  • Chiang, Tai-Chang
  • Phillips, Philip
Abstract

<jats:title>Abstract</jats:title><jats:p>The characteristic excitation of a metal is its plasmon, which is a quantized collective oscillation of its electron density. In 1956, David Pines predicted that a distinct type of plasmon, dubbed a ‘demon’, could exist in three-dimensional (3D) metals containing more than one species of charge carrier<jats:sup>1</jats:sup>. Consisting of out-of-phase movement of electrons in different bands, demons are acoustic, electrically neutral and do not couple to light, so have never been detected in an equilibrium, 3D metal. Nevertheless, demons are believed to be critical for diverse phenomena including phase transitions in mixed-valence semimetals<jats:sup>2</jats:sup>, optical properties of metal nanoparticles<jats:sup>3</jats:sup>, soundarons in Weyl semimetals<jats:sup>4</jats:sup> and high-temperature superconductivity in, for example, metal hydrides<jats:sup>3,5–7</jats:sup>. Here, we present evidence for a demon in Sr<jats:sub>2</jats:sub>RuO<jats:sub>4</jats:sub> from momentum-resolved electron energy-loss spectroscopy. Formed of electrons in the <jats:italic>β</jats:italic> and <jats:italic>γ</jats:italic> bands, the demon is gapless with critical momentum <jats:italic>q</jats:italic><jats:sub>c</jats:sub> = 0.08 reciprocal lattice units and room-temperature velocity <jats:italic>v</jats:italic> = (1.065 ± 0.12) × 10<jats:sup>5</jats:sup> m s<jats:sup>−1</jats:sup> that undergoes a 31% renormalization upon cooling to 30 K because of coupling to the particle–hole continuum. The momentum dependence of the intensity of the demon confirms its neutral character. Our study confirms a 67-year old prediction and indicates that demons may be a pervasive feature of multiband metals.</jats:p>

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • phase
  • phase transition
  • superconductivity
  • superconductivity