People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Du, Xiaohan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Single-lens dynamic $$z$$-scanning for simultaneous in situ position detection and laser processing focus control
Abstract
<jats:title>Abstract</jats:title><jats:p>Existing auto-focusing methods in laser processing typically include two independent modules, one for surface detection and another for <jats:inline-formula><jats:alternatives><jats:tex-math>z</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>z</mml:mi></mml:math></jats:alternatives></jats:inline-formula>-axis adjustment. The latter is mostly implemented by mechanical <jats:inline-formula><jats:alternatives><jats:tex-math>z</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>z</mml:mi></mml:math></jats:alternatives></jats:inline-formula> stage motion, which is up to three orders of magnitude slower than the lateral processing speed. To alleviate this processing bottleneck, we developed a single-lens approach, using only one high-speed <jats:inline-formula><jats:alternatives><jats:tex-math>z</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>z</mml:mi></mml:math></jats:alternatives></jats:inline-formula>-scanning optical element, to accomplish both in situ surface detection and focus control quasi-simultaneously in a dual-beam setup. The probing beam scans the surface along the <jats:inline-formula><jats:alternatives><jats:tex-math>z</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>z</mml:mi></mml:math></jats:alternatives></jats:inline-formula>-axis continuously, and its reflection is detected by a set of confocal optics. Based on the temporal response of the detected signal, we have developed and experimentally demonstrated a dynamic surface detection method at 140–350 kHz, with a controlled detection range, high repeatability, and minimum linearity error of 1.10%. Sequentially, by synchronizing at a corresponding oscillation phase of the <jats:inline-formula><jats:alternatives><jats:tex-math>z</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>z</mml:mi></mml:math></jats:alternatives></jats:inline-formula>-scanning lens, the fabrication beam is directed to the probed <jats:inline-formula><jats:alternatives><jats:tex-math>z</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>z</mml:mi></mml:math></jats:alternatives></jats:inline-formula> position for precise focus alignment. Overall, our approach provides instantaneous surface tracking by collecting position information and executing focal control both at 140–350 kHz, which significantly accelerates the axial alignment process and offers great potential for enhancing the speed of advanced manufacturing processes in three-dimensional space.</jats:p>