Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Acker, Frederik Van

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Quantum dot lasing from a waterproof and stretchable polymer film10citations

Places of action

Chart of shared publication
Neyts, Kristiaan
1 / 9 shared
Aubert, Tangi
1 / 5 shared
Hens, Zeger
1 / 29 shared
Beeckman, Jeroen
1 / 19 shared
Geiregat, Pieter
1 / 8 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Neyts, Kristiaan
  • Aubert, Tangi
  • Hens, Zeger
  • Beeckman, Jeroen
  • Geiregat, Pieter
OrganizationsLocationPeople

article

Quantum dot lasing from a waterproof and stretchable polymer film

  • Neyts, Kristiaan
  • Aubert, Tangi
  • Hens, Zeger
  • Beeckman, Jeroen
  • Geiregat, Pieter
  • Acker, Frederik Van
Abstract

<jats:title>Abstract</jats:title><jats:p>Colloidal quantum dots (QDs) are excellent optical gain materials that combine high material gain, a strong absorption of pump light, stability under strong light exposure and a suitability for solution-based processing. The integration of QDs in laser cavities that fully exploit the potential of these emerging optical materials remains, however, a challenge. In this work, we report on a vertical cavity surface emitting laser, which consists of a thin film of QDs embedded between two layers of polymerized chiral liquid crystal. Forward directed, circularly polarized defect mode lasing under nanosecond-pulsed excitation is demonstrated within the photonic band gap of the chiral liquid crystal. Stable and long-term narrow-linewidth lasing of an exfoliated free-standing, flexible film under water is obtained at room temperature. Moreover, we show that the lasing wavelength of this flexible cavity shifts under influence of pressure, strain or temperature. As such, the combination of solution processable and stable inorganic QDs with high chiral liquid crystal reflectivity and effective polymer encapsulation leads to a flexible device with long operational lifetime, that can be immersed in different protic solvents to act as a sensor.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • thin film
  • defect
  • quantum dot
  • liquid crystal