People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bao, Zhenan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2022Visualization of the distribution of covalently cross-linked hydrogels in CLARITY brain-polymer hybrids for different monomer concentrations.citations
- 2021Conducting Polymer‐Based Granular Hydrogels for Injectable 3D Cell Scaffolds
- 2020Understanding the Origin of Highly Selective CO2 Electroreduction to CO on Ni, N-doped Carbon Catalysts.citations
- 2020Air-Stability and Carrier Type in Conductive M3(Hexaaminobenzene)2, (M = Co, Ni, Cu).citations
- 2019Fine-Tuning Semiconducting Polymer Self-Aggregation and Crystallinity Enables Optimal Morphology and High-Performance Printed All-Polymer Solar Cells.citations
- 2018Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistorscitations
- 2016Direct Uniaxial Alignment of a Donor-Acceptor Semiconducting Polymer Using Single-Step Solution Shearing.citations
- 2015Structural and Electrical Investigation of C 60 –Graphene Vertical Heterostructurescitations
- 2015Ultrahigh electrical conductivity in solution-sheared polymeric transparent films.citations
- 2015Large-area formation of self-aligned crystalline domains of organic semiconductors on transistor channels using CONNECTcitations
- 2015Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor-Acceptor Conjugated Polymerscitations
- 2014One-dimensional self-confinement promotes polymorph selection in large-area organic semiconductor thin filmscitations
- 2014Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymercitations
- 2012Controlled Conjugated Backbone Twisting for an Increased Open-Circuit Voltage while Having a High Short-Circuit Current in Poly(hexylthiophene) Derivativescitations
- 2012Chemical and Engineering Approaches To Enable Organic Field-Effect Transistors for Electronic Skin Applicationscitations
- 2011Tuning charge transport in solution-sheared organic semiconductors using lattice straincitations
- 2010Highly sensitive flexible pressure sensors with microstructured rubber dielectric layerscitations
- 2009Self-Sorted Nanotube Networks on Polymer Dielectrics for Low-Voltage Thin-Film Transistorscitations
- 2009High-Performance Air-Stable n-Channel Organic Thin Film Transistors Based on Halogenated Perylene Bisimide Semiconductorscitations
- 2009Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistorscitations
Places of action
Organizations | Location | People |
---|
article
Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers
Abstract
The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times.