Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mutka, H.

  • Google
  • 1
  • 11
  • 55

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Portraying entanglement between molecular qubits with four-dimensional inelastic neutron scattering55citations

Places of action

Chart of shared publication
Amoretti, G.
1 / 1 shared
Guidi, T.
1 / 10 shared
Ansbro, Simon
1 / 1 shared
Whitehead, George
1 / 9 shared
Santini, P.
1 / 3 shared
Vitorica-Yrezabal, Inigo J.
1 / 14 shared
Timco, Grigore A.
1 / 12 shared
Garlatti, E.
1 / 1 shared
Winpenny, Richard E. P.
1 / 15 shared
Carretta, S.
1 / 2 shared
Ollivier, J.
1 / 7 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Amoretti, G.
  • Guidi, T.
  • Ansbro, Simon
  • Whitehead, George
  • Santini, P.
  • Vitorica-Yrezabal, Inigo J.
  • Timco, Grigore A.
  • Garlatti, E.
  • Winpenny, Richard E. P.
  • Carretta, S.
  • Ollivier, J.
OrganizationsLocationPeople

article

Portraying entanglement between molecular qubits with four-dimensional inelastic neutron scattering

  • Amoretti, G.
  • Guidi, T.
  • Ansbro, Simon
  • Whitehead, George
  • Mutka, H.
  • Santini, P.
  • Vitorica-Yrezabal, Inigo J.
  • Timco, Grigore A.
  • Garlatti, E.
  • Winpenny, Richard E. P.
  • Carretta, S.
  • Ollivier, J.
Abstract

Entanglement is a crucial resource for quantum information processing and its detection and quantification is of paramount importance in many areas of current research. Weakly-coupled molecular nanomagnets provide an ideal test bed for investigating entanglement between complex spin systems. However, entanglement in these systems has only been experimentally demonstrated rather indirectly by macroscopic techniques or by fitting trial model Hamiltonians to experimental data. Here we show that four-dimensional inelastic neutron scattering enables us to portray entanglement in weakly-coupled molecular qubits and to quantify it. We exploit a prototype (Cr7Ni)2supramolecular dimer as a benchmark to demonstrate the potential of this approach, which allows one to extract the concurrence in eigenstates of a dimer of molecular qubits without diagonalizing its full Hamiltonian.

Topics
  • impedance spectroscopy
  • Inelastic neutron scattering