Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vantomme, Ghislaine

  • Google
  • 9
  • 28
  • 1363

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2023Photoswitchable Liquid-to-Solid Transition of Azobenzene-Decorated Polysiloxanes24citations
  • 2023Photoswitchable Liquid-to-Solid Transition of Azobenzene-Decorated Polysiloxanes24citations
  • 2021Photo-controlled alignment and helical organization in main-chain liquid crystalline alternating polymers14citations
  • 2021Consequences of Chirality in Directing the Pathway of Cholesteric Helix Inversion of π-Conjugated Polymers by Light47citations
  • 2021Consequences of Chirality in Directing the Pathway of Cholesteric Helix Inversion of π-Conjugated Polymers by Light47citations
  • 2021Unraveling the Complexity of Supramolecular Copolymerization Dictated by Triazine-Benzene Interactions47citations
  • 2017A rewritable, reprogrammable, dual light-responsive polymer actuator142citations
  • 2017Making waves in a photoactive polymer film911citations
  • 2017A four-blade light-driven plastic mill based on hydrazone liquid-crystal networks107citations

Places of action

Chart of shared publication
Eisenreich, Fabian
2 / 5 shared
Meijer, E. W.
3 / 50 shared
Engels, Tom A. P.
2 / 33 shared
Cardinaels, Ruth
1 / 11 shared
Cardinaels, Ruth M.
1 / 19 shared
Tol, Joost J. B. Van Der
1 / 2 shared
Meijer, Ew Bert
5 / 48 shared
Lamers, Brigitte A. G.
1 / 8 shared
Meskers, Stefan C. J.
3 / 29 shared
Sakaino, Hirotoshi
1 / 1 shared
Curvers, Rick H. N.
2 / 2 shared
Kulkarni, Chidambar
1 / 3 shared
Palmans, Anja R. A.
1 / 10 shared
Broer, Dirk J.
1 / 11 shared
Palmans, Ara Anja
1 / 36 shared
Broer, Dj Dirkdick
4 / 65 shared
Rösch, Andreas T.
1 / 1 shared
Liu, Jie
1 / 14 shared
Su, Hao
1 / 4 shared
Weyandt, Elisabeth
1 / 1 shared
Schnitzer, Tobias
1 / 1 shared
Jansen, Stef A. H.
1 / 1 shared
Schenning, Aphj Albert
1 / 37 shared
Mulder, Dirk Jan
2 / 6 shared
Gelebart, A. H.
3 / 5 shared
Selinger, R. L. B.
1 / 4 shared
Konya, A.
1 / 4 shared
Varga, M.
1 / 30 shared
Chart of publication period
2023
2021
2017

Co-Authors (by relevance)

  • Eisenreich, Fabian
  • Meijer, E. W.
  • Engels, Tom A. P.
  • Cardinaels, Ruth
  • Cardinaels, Ruth M.
  • Tol, Joost J. B. Van Der
  • Meijer, Ew Bert
  • Lamers, Brigitte A. G.
  • Meskers, Stefan C. J.
  • Sakaino, Hirotoshi
  • Curvers, Rick H. N.
  • Kulkarni, Chidambar
  • Palmans, Anja R. A.
  • Broer, Dirk J.
  • Palmans, Ara Anja
  • Broer, Dj Dirkdick
  • Rösch, Andreas T.
  • Liu, Jie
  • Su, Hao
  • Weyandt, Elisabeth
  • Schnitzer, Tobias
  • Jansen, Stef A. H.
  • Schenning, Aphj Albert
  • Mulder, Dirk Jan
  • Gelebart, A. H.
  • Selinger, R. L. B.
  • Konya, A.
  • Varga, M.
OrganizationsLocationPeople

article

Making waves in a photoactive polymer film

  • Selinger, R. L. B.
  • Broer, Dj Dirkdick
  • Konya, A.
  • Vantomme, Ghislaine
  • Meijer, Ew Bert
  • Mulder, Dirk Jan
  • Gelebart, A. H.
  • Varga, M.
Abstract

<p>Oscillating materials that adapt their shapes in response to external stimuli are of interest for emerging applications in medicine and robotics. For example, liquid-crystal networks can be programmed to undergo stimulus-induced deformations in various geometries, including in response to light. Azobenzene molecules are often incorporated into liquid-crystal polymer films to make them photoresponsive; however, in most cases only the bending responses of these films have been studied, and relaxation after photo-isomerization is rather slow. Modifying the core or adding substituents to the azobenzene moiety can lead to marked changes in photophysical and photochemical properties, providing an opportunity to circumvent the use of a complex set-up that involves multiple light sources, lenses or mirrors. Here, by incorporating azobenzene derivatives with fast cis-to-trans thermal relaxation into liquid-crystal networks, we generate photoactive polymer films that exhibit continuous, directional, macroscopic mechanical waves under constant light illumination, with a feedback loop that is driven by self-shadowing. We explain the mechanism of wave generation using a theoretical model and numerical simulations, which show good qualitative agreement with our experiments. We also demonstrate the potential application of our photoactive films in light-driven locomotion and self-cleaning surfaces, and anticipate further applications in fields such as photomechanical energy harvesting and miniaturized transport.</p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • experiment
  • simulation
  • chemical ionisation