Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhao, Bin

  • Google
  • 4
  • 35
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Two-Step Electrochemical Au Nanoparticle Formation in Polyanilinecitations
  • 2023Local Structure and Density of Liquid Fe‐C‐S Alloys at Moon's Core Conditions3citations
  • 2022Nanocellulose Removes the Need for Chemical Crosslinking in Tannin-Based Rigid Foams and Enhances Their Strength and Fire Retardancy20citations
  • 2022Picosecond acoustics: a new way to access elastic properties of materials at pressure and temperature conditions of planetary interiors5citations

Places of action

Chart of shared publication
Becker, Hans-Werner
1 / 16 shared
Gutsch, Sebastian
1 / 6 shared
Siersch, Nicki
1 / 1 shared
Fei, Yingwei
1 / 3 shared
Rivoldini, Attilio
1 / 4 shared
Boulard, Eglantine
1 / 2 shared
Morard, Guillaume
1 / 36 shared
Guignot, Nicolas
1 / 13 shared
King, Andrew
1 / 27 shared
Zurkowski, Claire
1 / 2 shared
Boccato, Silvia
2 / 5 shared
Antonangeli, Daniele
2 / 14 shared
Henry, Laura
1 / 2 shared
Kämäräinen, Tero
1 / 2 shared
Otoni, Caio G.
1 / 4 shared
Silva, Silvia H. F.
1 / 1 shared
Beaumont, Marco
1 / 9 shared
Missio, André Luiz
1 / 1 shared
Rojas, Orlando J.
1 / 51 shared
Mattos, Bruno D.
1 / 4 shared
Khakalo, Alexey
1 / 14 shared
Garino, Yiuri
1 / 1 shared
Decremps, Frédéric
1 / 4 shared
Bretonnet, Cécile
1 / 1 shared
Rosier, Philippe
1 / 1 shared
Balugani, Sofia
1 / 1 shared
Guarnelli, Yoann
1 / 1 shared
Verbeke, Katia
1 / 1 shared
Guillot, Maëva
1 / 1 shared
Ayrinhac, Simon
1 / 3 shared
Siersch, Nicki C.
1 / 2 shared
Parisiades, Paraskevas
1 / 2 shared
Morand, Marc
1 / 2 shared
Gauthier, Michel
1 / 5 shared
Delétang, Thibault
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Becker, Hans-Werner
  • Gutsch, Sebastian
  • Siersch, Nicki
  • Fei, Yingwei
  • Rivoldini, Attilio
  • Boulard, Eglantine
  • Morard, Guillaume
  • Guignot, Nicolas
  • King, Andrew
  • Zurkowski, Claire
  • Boccato, Silvia
  • Antonangeli, Daniele
  • Henry, Laura
  • Kämäräinen, Tero
  • Otoni, Caio G.
  • Silva, Silvia H. F.
  • Beaumont, Marco
  • Missio, André Luiz
  • Rojas, Orlando J.
  • Mattos, Bruno D.
  • Khakalo, Alexey
  • Garino, Yiuri
  • Decremps, Frédéric
  • Bretonnet, Cécile
  • Rosier, Philippe
  • Balugani, Sofia
  • Guarnelli, Yoann
  • Verbeke, Katia
  • Guillot, Maëva
  • Ayrinhac, Simon
  • Siersch, Nicki C.
  • Parisiades, Paraskevas
  • Morand, Marc
  • Gauthier, Michel
  • Delétang, Thibault
OrganizationsLocationPeople

article

Local Structure and Density of Liquid Fe‐C‐S Alloys at Moon's Core Conditions

  • Siersch, Nicki
  • Fei, Yingwei
  • Rivoldini, Attilio
  • Zhao, Bin
  • Boulard, Eglantine
  • Morard, Guillaume
  • Guignot, Nicolas
  • King, Andrew
  • Zurkowski, Claire
  • Boccato, Silvia
  • Antonangeli, Daniele
  • Henry, Laura
Abstract

The local structure and density of ternary Fe-C-S liquid alloys have been studied using a combination of in situ X-ray diffraction and absorption experiments between 1 and 5 GPa and 1600–1900 K. The addition of up to 12 at% of carbon (C) to Fe-S liquid alloys does not significantly modify the structure, which is largely controlled by the perturbation to the Fe-Fe network induced by S atoms. The liquid density determined from diffraction and/or absorption techniques allows us to build a non-ideal ternary mixing model as a function of pressure, temperature, and composition in terms of the content of alloying light elements. The composition of the Moon's core is addressed based on this thermodynamic model. Under the assumption of a homogeneous liquid core proposed by two recent Moon models, the sulfur content would be 27–36 wt% or 12–23 wt%, respectively, while the carbon content is mainly limited by the Fe-C-S miscibility gap, with an upper bound of 4.3 wt%. On the other hand, if the core is partially molten, the core temperature is necessarily lower than 1850 K estimated in the text, and the composition of both the inner and outer core would be controlled by aspects of the Fe-C-S phase diagram not yet sufficiently constrained.

Topics
  • density
  • impedance spectroscopy
  • Carbon
  • phase
  • x-ray diffraction
  • experiment
  • mass spectrometry
  • phase diagram
  • carbon content