People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Groß, Uwe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020Spectrum of antibiotic resistant bacteria and fungi isolated from chronically infected wounds in a rural district hospital in Ghana
- 2017Molecular Tools for the Detection and Deduction of Azole Antifungal Drug Resistance Phenotypes in Aspergillus Speciescitations
- 2013Synthesis and Properties of Bridgehead-Functionalized Permethylbicyclo[2.2.2]octasilanescitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and Properties of Bridgehead-Functionalized Permethylbicyclo[2.2.2]octasilanes
Abstract
A series of previously unknown bridgehead-functionalized bicyclo[2.2.2]octasilanes, Me3Si-Si8Me12-X, X-Si8Me12-X, and X-Si8Me12-Y [X, Y = −SiMenPh3–n (n = 1, 2) (2, 3, 10), −SiMe2Fc (Fc = ferrocenyl) (4, 11, 13, 14), −COR (R = Me, tBu) (6, 7, 12), COOMe (8), COOH (9)], have been prepared by the reaction of the silanides Me3Si-Si8Me12–K+ or K+–Si8Me12–K+ with proper electrophiles and fully characterized. The molecular structures of 2, 3, 4, 6, 8, 9, 10, and 13 as determined by single-crystal X-ray diffraction analysis exhibit a slightly twisted structure of the bicyclooctasilane cage. Endocyclic bond lengths, bond angles, and dihedral angles are not influenced considerably by the substituents attached to the bridgehead silicon atoms. Due to σ(SiSi)/π(aryl) conjugation, a 20–30 nm bathochromic shift of the longest wavelength UV absorption band relative to Me3Si-Si8Me12-SiMe3 (1) is evident in the UV absorption spectra of the phenyl and ferrocenyl derivatives. Otherwise, UV absorption data do not support the assumption of aryl/aryl or aryl/C═O interaction via the σ(SiSi) bicyclooctasilane framework.